TRS-80” VMIODEL /Il

RSCOBOL
LANGUAGE
REFERENCE
MANUAL

A Description of the |
RSCOBOL Programming
Language

Radio fhack BCEE: '] SOFTWARE

R E - B P of e ¥~ ITIxX

LI A] SR]

i T S RS

JANUARY s 198

COPYRIGHT NOTICES

TRS-80 MODEL II COBOL

(c) (P) 1980 by Ryan-McFarland Corporation, Aptos, California
95003; Licensed to Tandy Corporation, Fort Worth, Texas 76102.
A1l rights reserved.

TRS-80 MODEL II TRSDOS DISK OPERATING SYSTEM (TRSDOS)
(C) (P) 1980 by Tandy Corporation. All rights reserved.

TRS-80 MODEL II COBOL LANGUAGE REFERENCE MANUAL

(C) 1980 by Ryan-McFarland Corporation; Licensed to Tandy
Corporation. All rights rserved.

Reproduction or use, without express permission, of editorial or
pictorial content, in any manner, is prohibited. While every
precaution has Dbeen taken in the preparation of this book, Tandy
Corporation assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting from the
use of the information contained herein.

PREFACE

This reference document describes the COBOL. Language as
implemented on the Radio Shack TRS5-80 Model II Microcomputer under
the TRSDOS Disk Operating System.

It assumes the reader is familiar with the COBOL Language. the
general operation of the TRS5-80 Model I1 Microcomputer, and the
TRSDOS Operating System. The reader is specifically referred to
the following publications:

TRE-80 Model II COBOL User’s Guide
TRS--80 Model 11 Operation Manual
TRS-80 Model II Disk Operating System Reference Manval

ACKNOWLEDGEMENT

Much of the material in this manuval is extracted from the ANSI
X3.23-1974 caBoLu Standard. Accordingly, the following
acknowledgement is made as required in that document.

COBOL is an industry language and is not the property of any
company or group of companies, or of any organization or group of
organizations.

No warranty, expressed or implied, is made by any contributor or
by the CODASYL Programming Language Committee as to the accuracy
and functioning of the programming system and language. Moreover,
no responsibility is assumed by any contributor, oar by the
committee, in connection therewith

The authors and copyright holders of the copyrighted material used
herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming
for the UNIVAC I and II, Data Automation OSystems copyrighted
1958, 1959, by Sperry Rand Corporation; IBM Commercial
Translator Form No. F28- 8013, copyrighted 1959 by IBM; FACT,
DSI 27A5260-2740, copyrighted 1960 by Minneapolis—Honeywell

have specifically authorized the use of this material in whole or
in part, in the COBOL specifications. Such authorization extends
to the reproduction and use of COBOL specifications in programming
manuals or similar publications.

TABLE OF CONTENTS

Page

INTRODUCTION. i 1
INTRODUCTION TO COBOL.. 2
What is COBOL?. 2

The History of COBOL........................ 3

The Standardization of# COBOL................ 4
CONVENTIONS USED IN THIS MANUAL. S
Words. e S5
Brackets and Braces. S
Ellipses............o. .. 5
Punctuqtion 6
Special Characters. b
System Dependent Information................ 6
THE STRUCTURE OF THE COBOL LANGUAGE. 7
THE LANGUAGE STRUCTURE. 8
Character Set., 8
Separators. 10
Character-Strings. 11
COBOL Words. 11
User Words. 12
Reserved Words. 15
Literals. e, 18
Picture String. i9
Comment—~Entry....... 19
System Names. 19

THE PROGRAM STRUCTURE. 20
Source Format., 20
Statements. 22
Sentences., 23
Clauses and Entries. 23
Paragraphs. 24
Sections. e, 24
Divisions. 24

THE COPY STATEMENT. 29

III.

IV.

IDENTIFICATION DIVISION. 27
INTRODUCTION. i, 28
PROGRAM IDENTIFICATION.......................... 28

The PROGRAM-ID Paragraph.................... 29

The AUTHOR,. INSTALLATION, DATE-WRITTEN,
SECURITY Paragraphs. e 29
ENVIRONMENT DIVISION. 30
INTRODUCTION. e et i 31
CONFIGURATION SECTION., 32
The SOURCE-COMPUTER Paragraph............... 32
The OBJECT-COMPUTER Paragraph............... 33
The SPECIAL-NAMES Paragraph................. 34
INPUT-0OUTPUT SECTION. 36
The FILE-CONTROL Paragraph.................. 34
The Sequential File Control Entry........... 37
The Relative File Control Entry............. 39
The Indexed File Control Entry.............. 41
The I-0 CONTROL Paragraph................... 44
DATA DIVISION. i i 45
INTRODUCTION. i 44
FILE SECTION. i i, 48
The File Description Entry.................. 49
The BLOCK CONTAINS Clause................... 50
The RECORD CONTAINS Clause.................. 51
The LABEL RECORD Clause..................... o2
The VALUE OF Clavuse. S2
The DATA RECORDS Clause..................... 53
WORKING-STORAGE SECTION. 54
LINKAGE SECTION. i 54
RECORD DESCRIPTION ENTRY. 55
Level-Numbers. 99
Elementary Items..... 55

77 LEVEL DESCRIPTION ENTRY...................... 26

VI.

THE DATA DESCRIPTION ENTRY...................... 97

The Level—-Number...........o ... &0

The Data Name or FILLER Clause.............. 61

The REDEFINES Clavse. 62

The PICTURE Clause. i, 64

The USAGE Clause. 75

The SIGN Clause. 77

The OCCURS Clause. 78

The SYNCHRONIZED Clause. 80

The JUSTIFIED Clause. 82

The BLANK WHEN ZERDO Clause...........c...... 83

The VALUE IS Clause........ ... uuuuuuinun... 84

The RENAMES Clause. uueniin. 87
DATA STRUCTURES. i, 89
Classes of Data. 89
Representation of Numeric Items.............. 0
Representation of Algebraic Signs............ 20
Standard Alignment Rules..................... 91
QUALIFICATION. s i, 92
SUBSCRIPTING. s, 94
INDEXING. e e e, 95
IDENTIFIER. e e s 96
CONDITION-NAME. e e e s, Q7
TABLE HANDLING. i, o8
PROCEDURE DIVISION. i 101
THE PROCEDURE DIVISION. 102
Structure., 103
Declaratives. 104
Procedures. e e 104
Execution. e, 104
PROCEDURE REFERENCES. 105
SEGMENTATION. 107
Segments. e 107
Segmentation Classification......... 108
Segmentation Control., 108
Restrictions on Program Flow................ 108

THE USE STATEMENT. 110

ARITHMETIC STATEMENTS. 112

Arithmetic Expressions. 112
Arithmetic Operators..... 113
Formation and Evaluation Rules.............. 113
CONDITIONALS. e e e e e 114
Relation Condition. 115
Class Condition. 118
Condition—-name (Conditional Variable)....... 119
Switch-8tatus Condition. 120
Complex Conditions. 120
Negated Simple Conditions................... 121
Combined and Negated Combined
Conditions. 121
Condition Evaluation Rules. 122
SEQUENTIAL ORGANIZATION INPUT-OUTPUT............ 123
Function. i e e e e e 123
Organization. 123
Access Mode. e e 123
Current Record Pointer. 123
I-0 S8tatus. e 124
RELATIVE ORGANIZATION INPUT-QUTPUT.............. 126
Function. @ e 126
Organization. 126
Access Modes. e e 126
Current Record Pointer............ 127
I-0 Btatus. e e e 127
The INVALID KEY Condition................... 129
The AT END Condition.cuvu... 130
INDEXED ORGANIZATION INPUT-OUTPUT. 131
Function. e e 131
Organization. 131
Access Modes. e e 131
Current Record Pointer. 132
I-0 8tatus. e e 132
The INVALID KEY Condition................... 136

The AT END Condition........................ 136

PROCEDURAL STATEMENTS
ACCEPT. .. FROM Statement.
ACCEPT Statement (Terminal I-0).............
ADD Statement. e
ALTER Statement.
CALL Statement.
CLOSE Statement (Sequential I-0Q)............
CLOSE Statement (Relative & Indexed I-0)....
COMPUTE Statement.,
DELETE Statement (Relative & Indexed I-0)...
DISPLAY Statement (Terminal I-0)............
DIVIDE Statement.
EXIT Statement.
G0 TO Statement.
IF Statement.

APPENDIX A: ERROR MESSAGES

OPEN Statement (Sequential I-0).............
OPEN Statement (Relative % Indexed I-0).....
PERFORM Statement.
READ Statement (Sequential I-0).............
READ Statement (Relative & Indexed I-0).....
REWRITE Statement (Sequential I-0)..........
REWRITE Statement (Relative & Indexed I-0)..
SET Statement.
START Statement (Relative & Indexed I-0)....
STOP Statement.,
SUBTRACT Statement.
UNLOCK Statement.
WRITE Statement (Sequential I-0)............
WRITE Statement (Relative & Indexed I-0)....

APPENDIX B: RESERVED WORDS.
APPENDIX C: GLOSSARY..........

APPENDIX D: COMPOSITE LANGUAGE SKELETON.............

...........................

..........................

INTRODUCTION

PAGE 1

INTRODUCTION TO COBOL

What is COBOL?

COBOL (COmmon Business Oriented Language) is an English oriented
programming language designed primarily for developing business
applications on computers. It is described as English oriented
because its free form enables a programmer to write in such a way
that the final result can be read easily and the general flow of
the logic can be understood by persons not necessarily as closely
allied with the details of the problem as the programmer himsel#f.

Because COBOL 1is a programming language it can be translated to
serve as communication between the programmer and the computer.
The COBOL program (the source program) which has been written by
the programmer is input to the COBOL compiler. The COBOL compiler
then translates the COBOL program into a machine readable form
(the object program).

Although each computer has its own unique COBOL compiler program,
an industry-wide COBOL effort has Ttesulted in a degree of
compatibility so that a COBOL source program c¢an be exchanged
among different computers of one manufacturer or among computers
of different manufacturers.

A COBOL program is both a readable document and an efficient
computer program. Throughout the study of the COBOL language., it
is important to keep these two basic capabilities of COBOL in mind
and to observe the close relationship between them.

The readability factor of the COBOL language facilitates
communication not only between programmer and management, but also
ameng programmers, with a minimum of additional documentation. The
readability factor need not affect the other equally important
capability of constituting an efficient computer program. It is
precisely here that <the attention of a good COBOL programmer is
centered. He <can produce a solution in the form of a
well—-integrated COBOL program by combining the
following: knowledge of the problem. programming technique,
capability of the equipment, and familiarity with the available
elements of the COBOL language.

PAGE 2

The History of COBOL

Development of the COBOL programming language 1is a continuing
process performed by the Programming Language Committee (PLC) of
the COnference on DAta SYstems Languages (CODASYL). This committee
is made up of representatives of computer manufacturers and
computer users.

The +first wversion of the COBOL programming language to be
published by CODASYL was called COBOL-60. The second version,
called COBOL-61, contained changes in the organization of the
Procedure Division and thus was not completely compastible with
COBOL.—60.

In 1963 the third version, called COBOL-61 Extended, was released.
It was basically COBOL-461 with the addition of the sort feature,
the addition of the report writer feature, and the modification of
the arithmetics to include multiple receiving +fields and the
CORRESPONDING option.

The +fourth version of the COBOL programming language, COBOL-635,
consists of COBOL-61 Extended with the inclusion of a series of
options to provide for <the reading, writing, and processing of
mass storage files and the addition of table handling features.

Beginning in 1948 the CODASYL COBOL Programming Language Committee
began to report its developmental work in a Journal of
Development. The first report +to be published was the CODASYL
COBOL. Journal of Development -— 1948B. This journal is the official
report of the CODASYL COBOL Programming Language Committee and it
documents the developmental activities of CODASYL through July
1968. COBOL.-68 is based on COBOL-65 with certain additions and
deletions.

Additional COBOL Journal of Development reports were published in
1969. 1970 and 1973. Each documented the developmental activities
of CODASYL from the previous report, resulting in continually
varying COBOL definitions.

PAGE 3

The Standardization of COBOL

In September 1962 the American National Standards Institute (ANSI)
set up a committee to work on the definition of a standard COBOL
programming languvage. This standardization effort was based on the
technical content of COBOL as defined by CODASYL. In August 1968
an American National Standard COBOL was approved which was based
upon the developmental work of CODASYL through Janvary 1968. This
first version was called American National Standard COBOL 1968.

In May 1974 a revision of American MNational Standard COBOL was
approved. This revision. called American National Standard COBOL
1974, is based upon the developmental work of CODASYL through
December 1971. The COBOL programming language and compiler
described in this document is based on the American National
Standard COBOL 1974.

PAGE 4

CONVENTIONS USED IN THIS MANUAL

This manual presents the language definition and capabilities of
COBOL. in a generally accepted syntax consistent with the 1974
American National Standard COBOL document. As a result, COBOL
Syntax is specified by formats employing special notation.

Words

All underlined uppercase words are key words and are required when
the functions of which they are a part are used. Uppercase words
which are not wunderlined are optional and may or may not be
present in the source program. Uppercase words, whether underlined
or not, must be spelled correctly

Lowercase words are generic terms used to represent COBOL words,
literals, PICTURE character—strings, comment—-entries, or a
complete syntactical entry that must be supplied by the user. When
generic terms are repeated in a general format, a number or letter
appendage to the term serves to identify that term for explanation
or discussion.

Brackets and Braces

When a portion of a general format is enclosed in brackets, (i
that portion may be included or omitted at the user’s choice.
Braces, €}, enclosing a portion of a general format means a
selection of one of the options contained within the braces must
be made. In both cases, a choice 1is indicated by vertically
stacking +the possibilities. When brackets or braces enclose a
portion of a format, but only one possibility is shown, the
function of the brackets or braces is to delimit that portion of
the format to which a following ellipsis applies. If an option
within braces contains only reserved words that are not key words,
then the option is a default option (implicity selected unless one
of the other options is explicitly indicated).

Ellipsis

The ellipsis (...) represents the position at which repetition may
occur at the user’s option.

PAGE S

Punctuation , A~

The punctuation characters comma and semicolon are shown in some
formats. Where shown in the formats, they are optional and may be
included or omitted by the user. In the source program these two
punctuation characters are interchangeable and either may be wused
anywhere one of them is shown in the formats. Neither one may
appear immediately preceding the first clause of an entry or
parvagraph.

If desired, @ semicolon or comma may be used between statements in
the Procedure Division.

Paragraphs within the Identification and Procedure Divisions, and

the entries within the Environment and Data Divisions must be
terminated by the separator period.

Special Characters

The characters ‘+/, ‘=/, '>/,'<¢’, ’'=!, when appearing in formats,
although not underlined, are required when such formats are used.

N
System Dependent Information
Selected features in ANSI COBOL are intended for definition by the
implementor, to accomodate the capabilities and restrictions of
the host system. These system dependent items are summarized in
the COBOL Users Guide.
TN

PAGE 6

II

THE STRUCTURE OF THE COBOL LANGUAGE

PAGE 7

THE LANGUAGE STRUCTURE

The smallest element in the COBOL language is the character. A
character is a digit, a letter of the alphabet, or a symbol. A
COBOL. word is one possible result obtained when one or more COBOL
characters are joined in a sequence of contiguous characters. Just
as English words are determined by rules of spelling, so COBOL
words are formed by following a specific set of rules.

Using the COBOL rules of grammar, the COBDL words and COBOL
punctuation characters are combined into statements, sentences,
paragraphs, and sections. When writing normal English, a failure
to follow the rules of grammar and sentence structure may cause
misunderstanding; the same is true when writing COBOL. It must be
emphasized that a thorough knowledge of the rules of COBOL
structure is a prerequisite to writing a workable COBOL program.

Character Set

The COBOL character set consists of fifty—one characters:
Digits 0O through 9
Letters A through Z

Punctuation Blank (or space)
’ Comma
i Semicolon
. Period
" Quote
(Left parenthesis
) Right parenthesis

Greater than

l.Less than

Plus

Minus (ot hyphen)
Asterisk

Slash (or Stroke)
Equal

Currency

Special

ik AN

These characters determine the structure of a COBOL program. In
some constructs, such as comments, other characters may be used
but they have no grammatical meaning.

PAGE 8

Characters are combined to form either a separator or a
character—string.

The COBOL character set is a proper subset of the ASCII character
code set native to the computer. The complete character set may be
used only within non numeric literals and comments. The chart
below gives the hexadecimal and decimal codes for the complete
character set.

Hexadecimal Decimal Hexadecimal Decimal
Character Value Value Character Value Value
Space 20 32 e 40 64
! 21 33 A 41 65
" 22 34 B 42 bb&
23 35 Cc 43 &7
$ 24 36 D 44 68
% 25 37 E 45 &9
& 26 38 F 44 70
’ 27 39 G 47 71
{ 28 40 H 48 72
) 29 41 I 49 73
* 2A 42 J 4A 74
+ 2B 43 K 4B 75
' 2C 44 L 4C 76
- 2D 45 M 4D 77
. 2E 44 N 4E 78
/ 2F 47 0 4F 79
0 30 48 P 50 80
1 31 49 Q 51 81
2 32 50 R 52 a2
3 33 51 S 53 a3
4 34 52 T 54 84
S5 35 53 U 55 85
é 36 54 Vv 56 86
7 37 295 W 57 87
8 38 96 X 58 88
9 a9 57 Y 59 B89
: 3A o8 z 5A {0
i 3B 59 L 5B 91
< 3C &0 \ 5C P2
= 3D 61 b | 5D 93
> 3E 62 -~ SE 94
? 3F &3 - S5F 95

PAGE 9

Separators

A separator is a string of one or more punctuation characters.

Punctuation characters belong to the following set:

Space

Comma

Equal sign

Left parenthesis

. Period

" Quotation mark (double)
) Right parenthesis

i Semicolon

-~ 0~

Separators are formed according to the following rules:

1.

A space is a separator. Anywhere a space is uvsed as a
separator, more than one space may be used.

Comma, semicolon, and period are separators when immediately
followed by a space. These separators may appear only when
explicitly permitted

Parentheses are separators which may appear only in balanced
pairs of left and right parentheses delimiting subscripts,
indices, arithmetic expressions or conditions,

Left parentheses must be preceded by a separator space or left
parenthesis.

Right parenthesis must be followed by one of the separators:
space, period, semicolon, comma or right parenthesis.

Quotes are separators which may appear only in balanced pairs
delimiting the nonnumeric literals except when the literal is
continued.

An opening quotation mark must be immediately preceded by a
space or left parenthesis.

A closing quotation mark must be immediately followed by one

of the separators: space, comma, semicolon, period or right
parenthesis.

PAGE 10

5. The separator space may optionally immediately precede all
separators except:

As specified by reference format rules.

As the separator closing quotation mark. In this case, a
preceding space is considered as part of the nonnumeric
literal and not as a separator.

The separator space may optionally immediately follow any
separator except the opening quotation mark. In this case, a
following space is considered as part of the nonnumeric
literal and not as a separator.

Any punctuation character which appears as part of the
specification of a PICTURE character—string or numeric literal is
not considered as a punctuation character, but rather as a symbol
used in the specification of that PICTURE <character—string or
numeric literal. PICTURE character—strings are delimited only by
the separators space, comma, semicolon. or period.

These rules do not apply to the characters within nonnumeric
literals, picture strings, or comments.

Character-Strings

A character—string is a sequence of one or more characters that
form a COBOL word, literal, picture string, or comment. A
character~string is delimited by separators.

COBOL Words

A COBOL word is a character—-string of not more than 30 characters
which form either a user word or a reserved word. All words are
one or the other.

PAGE 11

User Words

User words are composed of the alphabetic characters, the numbers,
and the hyphen character. A user word must not begin or end with a
hyphen. With the exception of paragraph-name, section—-name,
level-number and segment-number, all wuser—defined words must
contain at least one alphabetic character. There are twelve types
of user words:

program-name condition—name

file-name index—name

record-name alphabet-name

data—-name text-name

paragraph—name level-number

gection—~name segment-number
Program—Name

The program-name identifies the COBOL source and object program.
The name must contain at least one alphabetic character. Only the
first & characters are associated with the object program.

File—~Name

File—names are the internal names for files accessed by the source
program. They are not necessarily the same as the external names
given to the files. File-names must contain at least one
alphabetic character and must be unique.

Record—-Name

Record—-names are used to name data records within a file. They
must contain at least one alphabetic character and, if not unique,
must be made unique by qualification with the file name.

Data—Name

A group of contiguous characters or a word of binary data treated
as a unit of data is called a data item, named by a data-name. A
data-name must contain at least one alphabetic character.
References to data items must be made unique by qualification or
the appending of subscripts (or indices) or both. Complete unique
references to data items are called identifiers.

PAGE 12

Paragraph-—Name

A paragraph-name is a procedure name that identifies the beginning
of a set of COBOL procedural sentences. If not wunique, a
paragraph-name must be made wunique by qualification with a
section—-name,.

Section—Name

A section-name is a procedure name that identifies <the beginning
of a set of paragraphs. Section-names must be unique.

Condition—-Name

A condition-name may be defined in the SPECIAL-NAMES paragraph
within the Environment Division or in a level—number 88
description within the Data Division.

A SPECIAL-NAMES condition—-name is assigned to ON STATUS or OFF
STATUS of one of eight system software switches.

A level-number 88 condition-name is assigned to a specific value,
set of values, or range of values within a complete set of values
that a data item may assume. The data item itself is called a
conditional variable.

A condition-name is used only in conditions as an abbreviation for
the relation condition which assumes that the associated switch or
conditional variable is equal to one of the set of valves to which
that condition—name is assigned.

Index—Name

An index—name names an index associated with a specific table. It
must contain at least one alphabetic character and must be unique.
Alphabet—-Name

An alphabet-name is used to specify a character code set. It must
contain at least one alphabetic character and must be unique.
Text—~Name

A text-name is the name of a COBOL library text file. It must

correspond exactly to a valid file access—name as described in the
operating system documentation.

PAGE 13

Level-Number

A level-number is used to specify the position of a data item
within a data hierarchy. A level-number is a one- or two—-digit
number in the range 01-49, &4, 77 or 88.

Level—-numbers &4, 77 and 88 identify special properties of a data
description entry.

Segment—Number

A segment-number specifies +the segmentation classification of a
section. It is a one—~ to two-digit number in the range 01-99.

PAGE 14

Reserved Words

The structure of COBOL governs the use of certain COBOL words
called reserved words. Reserved words, recognized by the COBOL
compiler, aid the compiler in determining how to generate a
program. A programmer cannot devise a reserved word for a COBOL
program; he must use the word designated by the format of the
languvage. A reserved word must not appear as a user-defined word
within a program. A list of all reserved words recognized by the
compiler is shown in Appendix B.

Five kinds of reserved words are recognized by the compiler:
Key words
Optional words
Connectives
Figurative constants
Special-characters
Key Words
Key words are required elements of COBOL formats. Their presence
indicates specific compiler action.
Optional Words
Optional words are optional elements of COBOL formats. Their
presence has no effect on the object program.
Connectives
The connectives OF and 1IN are used interchangeably to connect

qualifiers to a user word. The words AND and OR are logical
connectives and are used in the formation of conditions.

PAGE 15

Figurative Constants

Figurative constants identify commonly used constant values. These
constant wvalues are generated by the compiler according to the
context in which the references occur, Note that figuratives
represent values, not 1literal occurrences. Thus QUOTE cannot be
used to delimit a nonnumeric literal, SPACE is not a separator,
and so forth. Singular and plural forms of figuratives are
equivalent and may be used interchangeably.

ZERO
ZEROS
ZERDES

Represents the value O or one or more zero (0) characters,
depending on context.

SPACE

SPACES

Represents one or more space () characters.
HIGH-VALUE

HIGH~-VALUES

Represents one or more of the highest characters in the
collating sequence (hexadecimal FF).

LOW-VALUE
LOW-VALUES

Represents one or more of the 1lowest characters in the
collating sequence (hexadecimal 00).

QUOTE
QUOTES

Represents one or more quote (") characters.

PAGE 16

ALL literal

Represents one or more of the characters comprising the literal.
The literal must be either a nonnumeric literal or a figurative
constant. When a figurative constant 1is used, the word ALL is
redundant.

When a figurative constant represents a string of one or more
characters, the length of the string is determined by the compiler
from context according to the following rules:

1. When a +figurative constant is associated with another data
item, as when the figurative constant is moved to or compared
with another data item, the string of characters specified by
the figurative constant is repeated character—by-character on
the right until the size of the resultant string is equal to
the size in characters of the associated data item. This is
done prior to and independent of the application of any
JUSTIFIED clause that may be associated with the data item.

2. When a figurative constant is not associated with another
data item, as when the figurative constant appears in a
DISPLAY or STOP statement, the length of the string is one
character.

A figurative constant may be used wherever a literal appears in a
format, except that whenever the literal is restricted to having
only numeric characters in it, the only figurative constant
permitted is ZERO (ZEROS., ZEROES).

Each reserved word which 1is wused to reference a figurative
constant value is a distinct character—string with the exception
of the construction ‘ALL 1literal’ which is composed of two
distinct character—strings.

Special Characters

The special character words are the arithmetic operators and
relation characters:

Plus sign (indexing)
Minus sign (indexing)
Greater than

Less than

Equal to

TAVI+

PAGE 17

Literals

A literal 1is a character-string whose form determines its value.
Literals are either nonnumeric or numeric.

Nonnumeric Literals

A nonnumeric literal is a character—string enclosed in quotes. Any
characters in the COBOL character set may be used. Quote
characters within the string are represented by two contiguous
quotes. The value of the literal is the string itself excluding
the delimiting quotes and one of each contiguous pair of imbedded
quotes. The value of the 1literal may contain from 1 to 2047
characters.

Examples:
Literal Value
"AGE?" AGE?
iman TwENTY o -? 1 113 TNENTY n ?

illegal (odd number of quotes)

Numeric Literals

A numeric literal represents a numeric value,; not a
character—-string. Numeric literals are composed according to the
following rules:

1. The literal must contain from 1 to 18 digits.

2. The 1literal may contain a single plus or minus sign if it is
the first character.

3. The literal may contain a single decimal point if it is not
the last character. The decimal point must be represented with
a comma if the DECIMAL-POINT IS COMMA phrase is specified in
the SPECIAL-NAMES paragraph.

Examples:

1234
+1234
-1. 234

. 1234
+. 1234

PAGE 18

Picture String

A picture string consists of certain combinations of characters
from the COBOL character set wused as symbols. Any punctuation
character appearing as part of a picture string is considered to
be a symbol, not a punctuation character.

Comment—-Entry

A comment-entry is an entry in the Identification Division that
may contain any characters from the computer’s character set.

System Names

System names identify certain hardware or software system
components. System names consist of device-names and switch-names.

Device-Names Component

PRINT printer or print file
INPUT input only device
DUTPUT ovtput only device
INPUT-OQUTPUT input-output device
RANDOM disc

Switch—-Names Component

SWITCH-1

software switches

SWITCH-8

PAGE 19

THE PROGRAM STRUCTURE

Source Format

COBOL programs are accepted as a sequence of formatted lines (or
records) of 80 characters or less. Each line is divided into five
areas:

Columns Area

1-6 sequence number
7 indicator

8-11 A

12-72 B

73-80 identification

The sequence number and identification areas are used for clerical
and documentation purposes. They are ignored by the compiler.

The indicator area is wused for denoting 1line continuation,
comments, and debugging.

Areas A and B contain the actual program according to the
following rules:

1. Division headers, section headers. paragraph headers,
section-names, and paragraph-names must begin in area A.

2. The Data Division level indicator FD and level-numbers 01 and
77 must begin in area A. Other level-numbers may begin in area
A or area B, although B is preferable.

3. The key word DECLARATIVES and the key words END DECLARATIVES,
precede and follow, respectively, the declaratives portion of
the Procedure Division. Each must appear on a line by itself
and each must begin in area A and be followed by a period and
a space. ’

4. Any other language element must begin in area B unless it
immediately follows, on the same line, an element in area A.

PAGE 20

Continuation of Lines

Whenever a sentence, entry., phrase, or clause requires more than
one line, it may be continued by starting subsequent line(s) in
area B. These subsequent 1lines are called the continuation
line(s). The 1line being continued is called the continued line.
Any word or literal may be broken in such a way that part of it
appears on a continuation line, according to the following rules:

1. A hyphen in the indicator area of a line indicates that the
first nonblank character in area B of the current line is the
successor of the last nonblank character of the preceding line
without any intervening space. However, if the continuved line
contains a nonnumeric literal without closing quotation mark,
the first nonblank character in area B on the continuation
line must be a quotation mark, and the continuation starts
with the character immediately after that quotation mark. All
spaces at the end of the continued line are considered part of
the literal. Area A of continuvation line must be blank.

2. If there is no hyphen in the indicator area of a line, it is
assumed that the last character in the preceding line is
followed by a space.

Blank Lines

A blank line is one that is blank in the indicator, A and B areas.
A blank line can appear anywhere in the source program except
immediately preceding a continuation 1line with a hyphen in the
indicator area.

Comment Lines

A comment line is any line with an asterisk (#) in the indicator
area of the 1line. A comment line can appear as any line in a
source program after the Identification Division header. Any
combination of characters from the computer’s character set may be
included in area A and area B of that line. The asterisk and the
characters in area A and area B will be produced on the 1listing
but serve as documentation only.

Successive comment lines are allowed. Continuvation of comment
lines is permitted, except that each continuation 1line must
contain an asterisk in the indicator area.

A special form of comment line represented by a slash (/) in the

indicator area of the line causes page ejection prior to printing
the comment.

PAGE 21

Debugging Lines

A debugging line is any line with a D in the indicator area of the
line. Any debugging line that consists solely of spaces from area
A to the identifier area is considered to be a blank line.

A program that contains debugging 1lines must be syntactically
correct with or without the debugging lines.

A debugging line will be considered to have all the
characteristics of a comment line if the debug option 1is not
specified at compiler invocation.

Successive debugging lines are allowed. Continuation of debugging
lines is permitted, except that each continuation line must
contain a D in the indicator area, and character strings may not
be broken across two lines.

Statements

COBOL statements always begin with a key word called a verb. There
are three kinds of statements: directive, conditional, and
imperative.

A directive statement specifies action to be taken by the compiler
during compilation. The directive statements are:

The COPY and USE statements.
A conditional statement specifies that the truth value of a
condition is to be determined and that the subsequent action of
the object program is dependent on this truth value. The
conditional statements are:

An IF statement.

A READ statement with the AT END or INVALID KEY phrase.

A DELETE, REWRITE or START statement with the INVALID KEY
phrase.

A WRITE statement with the INVALID KEY phrase.

An arithmetic statement (ADD, COMPUTE. DIVIDE. MULTIPLY,
SUBTRACT) with the SIZE ERROR phrase.

PAGE &2

An imperative statement specifies an unconditional action to be
taken by the object program. The imperative statements are:

A READ statement without the AT END or INVALID KEY phrase.

A DELETE, REWRITE or START statement without the INVALID KEY
phrase.

A WRITE statement without the INVALID KEY phrase.

An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY,
SUBTRACT) without the ON SIZE ERROR phrase.

An ACCEPT., ALTER, CLOSE, DISPLAY, EXIT, GO, INSPECT, MOVE,
OPEN, PERFORM, SET or STOP statement.

Whenever the term imperative—-statement appears in the format of a
COBOL wverb, it refers to one or more consecutive imperative
statements. The sequence ends with a period separator or an ELSE
associated with an IF verb.

Sentences

A sentence is a sequence of one or more statements terminated by
the period separator. There are three kinds of sentences:
directive, conditional, and imperative.

A directive sentence may contain only a single directive
statement.

A conditional sentence is a conditional statement, optionally
preceded by a sequence of imperative statements, terminated by a
period followed by a space.

An imperative sentence is one or more imperative statements
terminated by a period separator.

Clauses and Entries

An entry is an item of descriptive or declaratory nature composed
of consecutive clauses. Each clause specifies an attribute of the
entry. Clauses are separated by space, comma, or semicolon
separators. The entry is terminated by a period separator.

PAGE 23

Paragraphs

A paragraph is a sequence of an arbitrary number, which may be
zero, of sentences or entries. In the Identification and
Environment Divisions, each paragraph begins with a reserved word
called a paragraph header. In the Procedure Division, each
paragraph begins with a user—-defined paragraph-name.

Sections

A section is a sequence of an arbitrary number, which may be zero,
of paragraphs in the Environment and Procedure Divisions and a
sequence of an arbitrary number, which may be zero, of entries in
the Data Division. In the Environment and Data Divisions, each
section begins with reserved words called a section header. In the
Procedure Division, each section begins with a wuser—defined
section—name.

Divisions

Each COBOL program consists of four divisions; each is composed of
paragraphs or sections. These are the Identification. Environment,
Data, and Procedure divisions, in that order. All divisions are
required. Each division begins with a group of reserved words
called a division header.

PAGE 24

THE COPY STATEMENT

The COPY statement provides the facility for copying text ¢From
user—specified files into the source program. Text is copied from
the file without change. The effect of the interpretation of the
COPY statement is to insert text into the source program, where it
will be treated by the compiler as part of the source program.

COBOL 1library text is placed on the COBOL library as a function
independent of the COBOL program and according to operating system
techniques.

FORMAT

COPY text—name.

The COPY statement must be preceded by a space and terminated by
the separator period. There must not be any additional text in
area B following the separator period.

Text—name is the external identification of the +file containing
the text ¢to be copied. Its format conforms to the rules for
filename (or pathname) construction of the host operating system.
I# the external identification contains any characters that are
not letters or digits. or if the first character is not a letter.
then the text-name must be written as a nonnumeric literal and
enclosed in quotation marks.

A COPY statement may occur in the source program anywhere a
characterstring or separator may occur except that a COPY
statement must not occur within a COPY statement.

The compilation of a source program containing COPY statements is
logically equivalent to processing all COPY statements prior to
the processing of the resulting source program.

The effect of processing a COPY statement is that the library text
associated with text-name is copied into +the source program,
logically replacing the entire COPY statement, beginning with the
reserved word COPY and ending with the punctuation character
period, inclusive.

The library text is copied unchanged.
Debugging 1lines are permitted within library text. If a COPY
statement is specified on a debugging 1line. then the COPY

statement will be processed only if the debug option has been
specified in the compiler invocation options.

PAGE 25

The text produced as a result of processing a COPY statement may
not contain a COPY statement.

The syntactic correctness of the 1library text cannot be
independently determined. The syntactic correctness of the entire
COBOL source cannot be determined until all COPY statements have
been completely processed.

Library text must conform to the rules for COBOL source format.

COPY Examples:

FILE-CONTROL.
COPY FLCTRL.

PROCEDURE DIVISION.
COPY "INPUTP. COBOL.".

PAGE 26

II11

IDENTIFICATION DIVISION

PAGE 27

INTRODUCTION

The Identification Division must be included in every COBOL source
program. This division identifies both the source program and the
resultant object program In addition. the user may include other
commentary information.

FORMAT

IDENTIFICATION DIVISION.

e G oo N e it M S o et G G4 Sad SO OO dulem Soa Gfatt e St S S

PROGRAM—ID. program—name.

CAUTHOR. [comment—entryl ...]

CINSTALLATION. [comment-entryl ... 1]

[DATE-WRITTEN. {comment-entryl ... 1]

T

[SECURITY. [comment-—-entryl ...]

o s s oo st bmate st Sy

PROGRAM IDENTIFICATION

The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and a space.

Paragraph headers identify <the type of information contained in
the paragraph. The name of the program must be given in the first
paragraph, which is the PROGRAM-ID paragraph. The other paragraphs
are optional and may be included at the user’s choice, in the
order of presentation shouwn.

PAGE 28

The PROGRAM-ID Paragraph

The PROGRAM-1ID paragraph, containing the program-name, identifies
the source program: the object program and all listings
pertaining to a particular program. A program—name is a
user—defined word made up of only those characters from the word
set.

A program-name cannot exceed 8 characters in length, and must

contain at least one alphabetic character located in any position
within the program—name. Each program—-name must be unique.

The AUTHOR, INSTALLATION, DATE-WRITTEN, SECURITY Paragraphs

The AUTHOR, INSTALLATION, DATE-WRITTEN, and SECURITY paragraphs
are optional. The programmer may use these paragraphs to document
information pertaining to the paragraph header.

The comment-entry may be any combination of characters from the
computer’s character set. The continuation of the comment—entry by
the wuse of the hyphen in the indicator area is not permitted;
however, the comment-entry may be contained on one or more lines.

PAGE 29

v

ENVIRONMENT DIVISION

PAGE 30

INTRODUCTION

The Environment Division describes the hardware configuration of
the compiling computer (source computer) and the computer on which
the object program is run (object computer). It also describes the
relationship between the files and the input/output media.

The Environment Division must be included in every COBOL source
program.

There are two sections in the Environment Division: the
Configuration Section and the Input—-Output Section.
FORMAT

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer—name.

OBJECT-COMPUTER. computer-name.

[SPECIAL~-NAMES. special-names-entryl.

CINPUT-OUTPUT SECTION.

FILE-CONTROL. <{file—control-entryl) ...

[I-0-CONTROL. input—output-control-entryll.

PAGE 31

CONFIGURATION SECTION

The Configuration Section deals with the characteristics of the
source computer and the object computer. This section is divided
into three paragraphs:

the SOURCE-COMPUTER paragraph, which describes the computer
configuration on which the source program is compiled

the OBJECT-COMPUTER paragraph, which describes the computer
configuration on which the object program produced by the
compiler is to be run

the SPECIAL-NAMES paragraph, which relates names used by the
compiler to user-names in the source program.

The S0URCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph identifies the computer upon which
the program is to be compiled.

FORMAT

SOURCE-COMPUTER. computer—name.

Computer—name is a uvuser—defined word and is only commentary.

PAGE 32

The OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph identifies the computer on which the
program is to be executed.

FORMAT

OBJECT-COMPUTER. computer—-name

C: MEMORY SIZE integer {WORDS X1

o - o — —— 10 o e

Computer-name is a user—defined word and is only commentary.

The MEMORY SIZE definition is treated as commentary.

The PROGRAM COLLATING SEQUENCE clause specifies the program
collating sequence to be used in determining the truth value of

any nonnumeric comparisons. The Program Collating Sequence clause
is treated as commentary; the collating sequence is always ASCII.

PAGE 33

The SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph relates names used by the compiler to
user-names in the source program.

[SPECIAL-NAMES. ([,switch-name

b T Y

{0ON STATUS IS cond-—name-1 [,OFF STATUS IS cond-name-21}1. ..

wan v ot

{OFF STATUS IS cond-name-2 [,ON STATUS IS cond—-name—1 17}

e vens — - ——

[,alphabet-name IS {STANDARD-12}1]...

o cose e ey ot Seme S it ot ot

[, CURRENCY SIGN IS literal-1il]

B T ——

[, DECIMAL-POINT IS COMMA] .1

Switch—-name may be SWITCH-1, SWITCH-8.

At least one condition-name must be associated with each
switch—-name given, The status of the switeh is specified by
condition—-names and interrogated by testing the condition—names.

The alphabet-name clause provides a means for relating a name to a
specified character code set and/or collating sequence. The
alphabet-name definition is treated as commentary; the collating
sequence is always ASCII.

PAGE 34

The literal which appears in the CURRENCY SIGN IS 1literal clause
is used in the PICTURE clause to represent the currency symbol.
The literal is limited to a single character and must not be one
of the following characters:

digits O through 9;

alphabetic characters A, B, C, D, L, P, R, 8 V. X, Z, or the
space;

special characters ‘%7, ‘+/, ‘=~¢, 7,7, Ly i I i),

&n 2 ¢ 4 o ¥
Y AL

If this clause is not present, only the currency sign ($) is used
in the PICTURE clause.

The clause DECIMAL-POINT IS COMMA means that the function of comma

and period are exchanged in the character—string of the PICTURE
clavse and in numeric literals.

PAGE 35

INPUT-0OUTPUT SECTION

The INPUT-OUTPUT section names the files and external media
required by an obgject program and provides information required
for transmission and handling of data during execution of the
object program. This section is divided into two paragraphs:

the FILE-CONTROL paragraph which names and associates the
files with external media.

the 1-0-CONTROL paragraph which defines special control
techniques to be used in the object program.
FORMAT

CINPUT-OUTPUT SECTION.

FILE-CONTROL.

T e e

{file~control-entryl} ...

[I-0-CONTROL.

I-O~control-entryll

The FILE-CONTROL Paragraph

The FILE-CONTROL paragraph names each file and allouws
specification of other file-related information.
FORMAT

FILE-CONTROL. {file~control-entryry ...

The content of the file-control—entry is dependent wupon the
organization of the file named.

PAGE 36

The Sequential File Control Entry

FORMAT

SELECT file-name

ASSIGN TO device—type, {"external-file-name"}
——————— {data-name-1 ¥

Li ORGANIZATION IS SEQUENTIAL]

[; ACCESS MODE 1S SEQUENTIAL]

—— o o oo O cas o s s oustn qamm e W S

The SELECT clavse must be specified first in the file control
entry. The clauses which follow the SELECT clause may appear in
any order.

Each file described in the Data Division must be named once and
only once as file—name in the FILE-CONTROL paragraph. Each file
specified in the file control entry must have a file description
entry in the Data Division.

The ASSIGN clause specifies the association of the file referenced
by file—name to a storage medium.

Device—type must be one of the device names INPUT, INPUT-OUTPUT,
OUTPUT, PRINT, or RANDOM according to the operations to be
performed.

External—-file-name specifies the file access name. It can be from
one to thirty characters in length and must be enclosed in
quotation marks. A name longer than thirty characters will be
diagnosed as an error. The name may contain any sequence of
characters supported by the operating system for file access
names.

Data-name—-1 must be defined in the Data Division as a data item of
category alphanumeric and must not be defined in the Linkage
Section. Its value at the time of an OPEN statement execution will
be used as the file access name. Data-name—1 may be qualified.

PAGE 37

The ORGANIZATION clause specifies the logical structure of a file.
The file organization is established at the time a file is created
and cannot subsequently be changed.

Records in the file are accessed in the sequence dictated by the
file organization. This sequence is specified by
predecessor—-successor record relationships established by the
execution of WRITE statements when the file is created or
extended.

When the ORGANIZATION clause is not specified, ORGANIZATION IS
SEQUENTIAL is implied.

The ACCESS MODE clause specifies the order in which records are
read or written.

I#+ the ACCESS MODE clause 1is not specified. ACCESS MODE IS
SEQUENTIAL is implied.

When the FILE STATUS clause is specified, a8 value will be moved by
the operating system into the data item specified by data—name-2
after the execution of every statement that references that file
either explicitly or implicitly. This value indicates the status
of execution of the statement.

Data-name—2 must be defined in the Data Division as a

two-character data item of the category alphanumeric and must not
be defined in the File Section. Data—-name-2 may be qualified

PAGE 38

TN

The Relative File Control Entry

FORMAT

SELECT file—name

ASSIGN TO RANDOM, {"external-~file-name"}
{data-name-1 }

i ORGANIZATION IS RELATIVE

- e ot oot oo S

oy oo guep e oo s ——— — o oo

{{DYNAMICY >

- — " a2t o '

The SELECT clause must be specified first in the file control
entry. The clauses which follow the SELECT clause may appear in
any order.

Each +file described in the Data Divison must be named once and
only once ag file-name in the FILE-CONTROL paragraph. Each +file
specified in the file control entry must have a file description
entry in the Data Division.

The ASSIGN TO RANDOM clause specifies the association of the file
referenced by file-name to a storage medium.

External-file-name specifies the file access name and must be
enclosed in quotation marks. It can be from one to thirty
characters in length. A name longer than thirty characters will be
diagnosed as an error. The name may contain any characters
supported by the operating system for file access names.

Data—-name—1 must be defined in the Data Division as a data item of
category alphanumeric and must not be defined in the Linkage
Section. Its value at the time of an OPEN statement execution will
be vused as the file access name. Data-name—1 may be qualified

PAGE 39

The ORGANIZATION IS RELATIVE clause specifies the 1logical "

structure of a file. The file organization is established at the .
time a file is created and cannot subsequently be changed.

All records stored in a relative file are uniquely identified by
relative record numbers. The relative record number of a given
record specifies the record’s logical ordinal position in the
file. The first logical record has a relative record number of one
(1), and subsequent logical records have relative record numbers
of 2, 3, 4, ...n.

The ACCESS MODE clause specifies the order in which records are to
be accessed.

When the ACCESS MODE IS SEQUENTIAL., records in the file are
accessed in the sequence dictated by the file organization. This
sequence is the order of ascending relative record numbers of
existing records in the file.

If the ACCESS MODE IS RANDOM, the value of the RELATIVE KEY data
item indicates the record to be accessed.

If a relative file is to be referenced by a START statement, the
RELATIVE KEY phrase must be specified for that file.

When the ACCESS MODE IS DYNAMIC, records in the #file may be
accessed sequentially and/or randomly

Data-name—~2 must not be defined in a record description entry
associated with that file-name. The data item referenced by
data-name—-2 must be defined as an unsigned integer. Data-name-2
may be qualified.

If the ACCESS MODE clause is not specified, ACCESS MODE IS
SEQUENTIAL is implied.

When the FILE STATUS clause is specified. a value will be moved by
the operating system into the data item specified by data—name—~3
after the execution of every statement that references that file
either explicitly or implicitly. This value indicates that status
of execution of the statement.

Data-name-3 must be defined in the Data Division as a

two—-character data item of the category alphanumeric and must not
be defined in the File Section.

PAGE 40

The Indexed File Control Entry

FORMAT

SELECT file-name

e

ASSIGN TO RANDOM, {"external-file-name"}
———————————— {data-name-1 >

[; ORGANIZATION IS INDEXED

———— v — " . o s oot e s antte g art

B

- o G SO it A B s ey Sbven $ETRS g o A - - s oMt 2o ooias oo

The SELECT clause must be specified first in the #file control
entry. The clauses which follow the SELECT clause may appear in
any order.

Each file described in the Data Division must be named once and
only once as file—-name in the FILE-CONTROL paragraph.

Each file specified in the file control entry must have a file
description entry in the Data Division.

The ASSIGN TO RANDOM clause specifies the association of the file
referenced by file-name to a storage medium,

External—-file-name specifies the file access name and must be
enclosed in quotation marks. It can be from one to thirty
characters in length. A name longer than thirty characters will be
diagnosed as an error. The name may contain any characters
supported by the operating system for file access names.

PAGE 41

Data-name—1 must be defined in the Data Division as a data item of
category alphanumeric and must not be defined in the Linkage
Section. Its value at the time of an OPEN statement execution will
be vsed as the file access name. Data-name—1 may be qualified.

The ORGANIZATION IS INDEXED clause specifies the logical structure
of a file. The file organization is established at the time a file
is created and cannot subsequently be changed.

The ACCESS MODE clause specifies the order in which records are teo
be accessed.

When the ACCESS MODE IS SEQUENTIAL, records in the file are
accessed in the sequence dictated by the +file organization. For
indexed files thigs sequence is the order of ascending record key
values within a given key of reference.

If the ACCESS MODE IS RANDOM, the value of the RECORD KEY data
item indicates the record to be accessed.

When the ACCESS MODE IS DYNAMIC, records in the file may be
accessed sequentially and/or randomly.

If the ACCESS MODE clause is not specified, ACCESS MODE IS
SEQUENTIAL is implied.

The RECORD KEY clause specifies the record key that is the prime
record key for the file. This prime record key provides an access
path to records in an indexed file.

An ALTERNATE RECORD KEY clause specifies a record key that is an
alternate record key for the file. This alternate record key
provides an alternate access path to records in an indexed file.

The data description of data-name-2 and data-name-3 as well as
their relative locations within a record must be the same as that
used when the file was created. The number of alternate keus for
the file must also be the same as that used when the file was
created.

The data items referenced by data-name—-2 and data-name-3 must each
be defined as a data item of the category alphanumeric within a
record description entry associated with that file—name.

Neither data-name~2 nor data-name-3 can describe an item whose
size is variable.

PAGE 42

Data—name-~3 cannot reference an item whose leftmost character
position corresponds to the leftmost character position of an item
referenced by data—name-2 or by any other data-name-3 associated
with this file.

Data-name-2 and data-name-3 may be qualified.

The WITH DUPLICATES phrase specifies that the value of the
associated alternate record key may be duplicated within any of
the records in the file. If the WITH DUPLICATES phrase is not
specified, the value of the associated alternate record key must
not be duplicated among any of the records in the file.

When the FILE STATUS clause is specified, a value will be moved by
the operating system into the data item specified by data-name-4
after the execution of every statement that references that file
either explicitly or implicitly. This valve indicates the status
of execution of the statement.

Data-name—~4 must be defined in the Data Division as a

two-character data item of the category alphanumeric and must not
be defined in the File Section.

PAGE 43

The I-0 CONTROL Paragraph

The I-0 CONTROL paragraph specifies the memory area which is to be
shared by different files.

FORMAT

I-0-CONTROL.

[; SAME AREA FOR file—name-1 [, file-name-2] ...1]

The I-0-CONTROL paragraph is optional.

The SAME AREA clause specifies that two or more files are to wuse
the same wmemory area during processing. The area being shared
includes all storage area assigned ¢to the files specified;
therefore, it is not valid to have more than one of the files open
at the same time.

More than one SAME clavse may be included in a program; however, a
file-name must not appear in more than one SAME AREA clause.

The files referenced in the SAME AREA clause need not all have the
same organization or access.

PAGE 44

DATA DIVISION

PAGE 45

INTRODUCTION

The Data Division describes the data that the object program is to
accept as input, to manipulate, to create, or to produce as
output. Data to be processed falls into three categories:

That which is contained in files and enters or leaves the
internal memory of the computer from a specified area or

areas.
That which is developed internally and placed into
intermediate or working storage, or placed into specific

format for output reporting purposes.
Constants which are defined by the user.

The Data Division, which is one of the required divisions in a
program, 1is subdivided into three sections:

The FILE OSECTION defines the structure of data files. Each
file is defined by a file description entry and one or more
record descriptions. Record descriptions are written
immediately following the file description entry.

The WORKING-STORAGE SECTION describes records and
noncontiguvous data items which are not part of external data
files but are developed and processed internally. It also
describes data items whose values are assigned in the source
program and do not change during the execution of the object
program.

The LINKAGE SECTION in a program is meaningful if and only i#f
the object program is to function under the control of a CALL
statement, and the CALL statement in the calling program
contains a USING phrase.

The Linkage Section is used for describing data that is
available through the calling program but is to be referred to
in both the «calling and the <called program. No space is
allocated in the program for data items referenced by
data—-names in the Linkage Section of that program. Procedure
Division references to these data items are resolved at object
time by equating the reference in the called program to the
location used in the calling program In the case of
index—names, no such correspondence is established.
Index-names in the called and calling program always refer to
separate indices.

PAGE 46

Data items defined in the Linkage Section of ¢the called
program may be referenced within the Procedure Division of the
called program only if they are specified as operands of the
USING phrase of the Procedure Division header or are
subordinate to such operands, and the object program is under
the control of a CALL statement that specifies a USING phrase.

FORMAT

DATA DIVISION.

ey Bt WSty it et wHs S seats sy S

——. g e aoo e oo i taan 9

[file-description—entry
[record—-description—entryl ... 1 ...1

[WORKING-STORAGE SECTION.

" ook ams s v "

[77-1level-description-entryl ...]
[record—-description—entry 1]

CLINKAGE SECTION.

L77-1level-description—-entryl ... 11
[record-description—-entry 1

PAGE 47

FILE SECTION

The File Section header is followed by a file description entry
consisting of a level indicator (FD), a file-name and a series of
independent clauses. The FD clauses specify the size of the
logical and physical records, the presence or absence of label
records, the value of label items, and the names of the data
records which comprise the file. The entry itself is terminated by
a period.

In a COBOL program the file description entry (FD) represents the
highest level or organization in the File Section.
FORMAT

FILE SECTION.

[file~description-entry
[record-description-entryl ... 1]

PAGE 48

The File Description Entry

The File Description furnishes information concerning the physical
structure, identification, and record name pertaining to a given
file.

FORMAT

FD file—-name

B

i LABEL. {RECORD IS » <{STANDARDY}

o - o o —ve oo St

S oooe s e o pram o -t vovas e e Soimm ot

[; DATA {RECORD IS > data-name—-1 [, data-name-21... 1.

{RECORDS AREY}

it e i oo vt s o

The 1level indicator FD identifies the beginning of a file
description and must precede the file-name.

The clauses which follow the name of the file are optional in many
cases, and their order of appearance is not significant.

One or more record description entries must follow the ¢file
description entry.

A file description entry must end with a period separator.

PAGE 49

The BLOCK CONTAINS Clause

The BLOCK CONTAINS clause specifies the size of a physical record.

FORMAT

o coits s o e - - - oo o

B e L T T

This clause is required except when:
A physical record contains only one complete logical record.

The device assigned to the file has only one physical record
size.

The device assigned to the file has a standard record size,
although the device may have more than one physical record
size. In this case, the absence of +this clause denotes the
standard physical record size.

The size of the physical record may be stated in terms of RECORDS,
unless one of the following situations exist, in which case the
RECORDS phrase must not be used:

In mass storage files where logical records may extend across
physical records.

The physical record contains padding.

L.ogical records are grouped in such a manner that an
inaccurate physical record size would be implied.

When the word CHARACTERS is specified, the physical record size is
specified in terms of the number of character positions required
to store the physical record, regardless of the types of
characters used to represent the items within the physical record.

If only integer-2 is shown, it represents the exact size of the
physical record. If integer—-1 and integer-2 are shown. they refer
to the minimum and maximum size of the physical record,
respectively.

PAGE 50

The RECORD CONTAINS Clause

The RECORD CONTAINS clause specifies the size of the data records.

FORMAT

The size of each data record is completely defined with the record
description entry, therefore this clause is never required. When
present, however, the following notes apply:

Integer—-2 may not be wused by itself wunless all the data
records in the file have the same size. In this case integer-2
represents the exact number of characters in the data record.

I# integer—1 and integer—-2 are both shown, they refer to the
minimum number of characters in the smallest size data record
and the maximum number of characters in the largest size data
record, respectively.

The size is specified in terms of the number of character
positions required to store the logical record, regardless of
the types of characters used to represent the items within the
logical record. The size of a record is determined by the sum
of the number of characters in all fixed length elementary
items plus any filler characters generated between elementary
items because of the SYNCHRONIZED clause.

PAGE 51

The LABEL RECORD Clause

~
The LABEL RECORD tlause specifies whether labels are present.
FORMAT
LABEL {RECORD IS8 J} {STANDARD)
{RECORDS ARE)Y {OMITTED 1}
This clause is required in every file description entry.
STANDARD specifies that labels exist for the file or the device to
which the file is assigned and the labels conform to the operating
system specification. GSTANDARD must be specified for files
assigned to a RANDOM device.
OMITTED specifies that no explicit labels exist for the file or
the device to which the file is assigned.
N
The VALUE OF Clause
The VALUE OF clause particularizes the description of an item in
the label records associated with a file.
- FORMAT
VALUE OF LABEL IS literal-l
This clause is treated as commentary.
This clause must not be specified if OMITTED is specified in the
LABEL. RECORDS clause.
N

PAGE 52

The DATA RECORDS Clause

The DATA RECORDS clause serves only as documentation for the names
of data records with their associated file

FORMAT

DATA {RECORD IS5 data-name—1 [, data-name~-21...

o e —t e v 1 aen osars

Data-name—1 and data—-name—-2 are the names of data records and must
have O1 1level-number record descriptions, with the same name,
associated with them.

The presence of more than one data-name indicates that the #file
contains more than one type of data record. These records may be
of differing sizes, different formats, etc. The order in which
they are listed is not significant.

Conceptually, all data records within a file share the same area.

This is in no way altered by the presence of more than one type of
data record within the file.

PAGE 53

WORKING-STORAGE SECTION

The Working—-Storage Section is composed of the section header,
followed by data description entries for 77 level description
entries and/or record description entries.

The data-name of a Ol-level data description entry in the
Working—-Storage Section must be wunique since it cannot be
qualified. Subordinate data-names need not be unique if they can
be made unique by qualification.

FORMAT

WORKING-STORAGE SECTION.

o o o - s o 2 oo e s

[77-1evel-description—entryl ...
[record-description—entry 1

LINKAGE SECTION

The structure of the Linkage Section is the same as for the
Working-Storage Section, beginning with a section header, followed
by data description entries for noncontiguous data items and/or
record description entries.

Each Linkage Section record-name and noncontiguous item name must
be unique within the called program since it cannot be qualified.

FORMAT

LINKAGE SECTION.

. ————. 1a o et e drs o W e

£t77-level-description—entryl
Lrecord-description—entry]

PAGE 54

RECORD DESCRIPTION ENTRY

A record description entry consists of a set of data description
entries which describe the characteristics of a particular record.
Each data description entry consists of a level-number followed by
a data-name and a series of independent clauses, as required

FORMAT

{data—-description—entry} ..

Level—Numbers

The first data description of a record must have a level—number of
01 or 1, and must start in area A of a source line.

Each data description entry can be subdivided into multiple data
description entries, each having the same level—-number; which must
be greater than the level-number of the subdivided entry, but less
than 50. Level-numbers do not necessarily have to be successive.
Thus, a record is a hierarchy of data description entries.

Elementary Items

Any data description entry which is not further subdivided is
called an elementary item. A record itself may be an elementary
item, consisting of a single level 01 data description entry. A
subdivided data description entry with its subdivisions is called
a group and 1is non-elementary. Therefore, a group includes all
group and elementary items following it until a level—-number less
than or equal to the level-number of that group is encountered.

Mote that certain clauses of the data description entry may occur
only in elementary items. They may not occur in Ol-level entry as
they may affect the subdivisions of that entry. An elementary item
must have either a PICTURE clause or INDEX usage; it may not have
both.

PAGE 355

77 LEVEL DESCRIPTION ENTRY

In the Working—-Storage and Linkage Sections, a special
level-number of 77 can be used in data description entries which
are not subdivisions of other items, and are not themselves
subdivided. These data description entries specify noncontiguous
data items. Such a data description entry is elementary.

A 77 level description entry must contain a data name and either
the PICTURE clause or the USAGE IS INDEX clause, but cannot
contain an OCCURS clause. Other clauses are optional and can be
used to complete the description of the item if necessary.

FORMAT

data-description—entry

PAGE 56

)

THE DATA DESCRIPTION ENTRY

A data description entry specifies the characteristics of a
particular item of data.

FORMAT 1

level—number {data-name-1>}
{FILLER >

- . ovets S durey dwe Souse o

[; LUSAGE IS] {COMPUTATIONAL 2

o v v e e et T

{COMPUTATIONAL -3

{COMP-3 ¥
{DISPLAY >
{INDEX 1

[; {0OCCURS {integer—1 TIMES ¥

T

oo s o ey ot oo ot

C; {SYNCHRONIZEDY {LEFT 1

{SYNC ¥} [RIGHTI]

o - o

PAGE 57

[; {JUSTIFIEDY RIGHT]

e LT

[i BLANK WHEN ZERO)

L; VALUE IS literall
FORMAT 2

64 data—name—1; RENAMES data—-name-2 [{THRODUGH} data-name-31].

- v ot ooy o ampes o qosen same wome yagm

FORMAT 3

88 condition—-name; {VALUE IS 2} literal-l [{THROUGHY literal-21]

The clauses may be written in any order with two exceptions:

the data-name-1 or FILLER clause must immediately follow the
level~number;

the REDEFINES <clause, when used, must immediately follow the
data-name—1 clause.

The PICTURE clause must be specified for every elementary item
except an index data item, in which case use of this clause is
prohibited.

The words THRU and THROUGH are equivalent.

The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO,
must not be specified except for an elementary data item.

PAGE 58

Format 3 is used for each condition—name. Each condition—-name
requires a separate entry with level-number 88. Format 3 contains
the name of the condition and the wvalue, values, or Tange of
values associated with the condition-name. The condition—-name
entries for a particular conditional variable must follow the
entry describing the item with which the condition-name is
associated. A condition—name can be associated with any data
description entry which contains a level-number except ¢the
following:

Another condition—-name.

A group containing items with descriptions including
JUSTIFIED, SYNCHRONIZED or USAGE (other than USAGE IS
DISPLAY).

An index data item.
A level 66 item.

Each data description entry must end with a period separator.

PAGE 5%

The Level-Number

The level-number shows the hierarchy of data within a logical
Tecord. In addition, it is used to identify entries for working
storage items, linkage items, condition-names and the RENAMES
clause.

FORMAT

level-number

A level-number 1is required as the first element in each data

description entry.

Data description entries subordinate to an FD entry must have
level-numbers with the values 01 through 49, 646 or 88.

Data description entries in the Working-Storage Section and
Linkage Section must have level-numbers with the values O1 through
49, &&, 77 or 88.

The level-number O1 identifies the first entry in each record
description.

Level-number 446 is assigned to identify RENAMES entries.

Level-number 77 is assigned to identify noncontiguous working
storage data items and noncontiguous linkage data items.

Level-number 88 is assigned to identify condition-names associated
with a conditional variable.

Multiple level 01 entries subordinate to any given level indicator
FD: represent implicit redefinitions of the same area.

PAGE &0

The Data-Name or FILLER Clause

A data—name specifies the name of the data being described. The
word FILLER specifies an elementary item of the logical record
that cannot be referred to explicity.

FORMAT

{data-name}
{FILLER))

A data-name or the key word FILLER must be the first word
following the level-number in each data description entry.

The key word FILLER may be used to name an elementary item in a
record. Under no circumstances can a FILLER item be rTeferred to
explicitly. However, the key word FILLER may be wused as a
conditional variable because such use does not require explicit
reference to the FILLER item, but to its valvue.

The key word FILLER may not be used in data description entries
with a 1, 01, 77, or 88 level-number.

PAGE 61

The REDEFINES Clause

The REDEFINES clause allows the same computer storage area to be
described by different data description entries.

FORMAT

level—number data-name—1; REDEFINES data-name-2

NOTE: Level-number, data-name~1 and the semicolon are shown in
the above format to improve clarity. Level—number and
data—-name—1 are not part of the REDEFINES clause.

The REDEFINES clause, when specified, must immediately follow
data—-name-1.

The level-numbers of data-name~1 and data—-name-2 must be identical
but must not be 446 or B88.

This clause must not be used in level Q1 entries in the File
Section.

The data description entry for data-name-2 cannot contain a
REDEFINES clause. Data-name-2 may be subordinate to an entry which
contains a REDEFINES clause. The data description entry for
data-name—-2 cannot contain an OCCURS clause. However. data-name-—-2
may be subordinate to an item whose data description entry

contains an OCCURS clause. In ¢this case, the reference to
data-name—-2 in the REDEFINES clause may not be subscripted or
indexed. Neither the original definition nor the redefinition can

include an item whose size is variable as defined in the OQOCCURS
clause.

No entry having a level-number numerically lower than the
level-number of data-name-2 and data-name—1 may occur between the
data description entries of data-name—2 and data-name-—1.

Redefinition starts at data-name—-2 and ends when a level-number
less than or equal to that of data-name-2 is encountered.

When the level-number of data-name—~1 is other than 01, it must
specify the same number of character positions that the data item
referenced by data-name~2 contains. It is important to observe
that ¢the REDEFINES clause specifies the redefinition of a storage
area, not of the data items occupying the area.

PAGE 62

Multiple redefinitions of the same character positions are
permitted. The entries giving the new descriptions of the
character positions must follow the entries defining the area
being redefined without intervening entries that define new
character positions. Multiple redefinitions of the same character
positions must all use the data-name of the entry that originally
defined the area.

The entries giving the new description of the character positions
must not contain any VALUE clauses except in condition-name
entries.

Multiple level O1 entries subordinate to any given level indicator
represent implicit redefinitions of the same area.

PAGE 63

The PICTURE Clause

The PICTURE clause describes the general characteristics and
editing requirements of an elementary item.

FORMAT

{PICTURE} IS character—string

A PICTURE «clause can be specified only at the elementary item
level,

A character—-string congists of certain allowable combinations of
characters in the COBOL character set wused as symbols. The
allowable combinations determine the category of the elementary
item.

The maximum number of characters allowed in the character—-string
is 30.

The PICTURE clause must be specified for every elementary item
except an index data item, in which case use of this clause is
prohibited.

PIC is an abbreviation for PICTURE.

There are five categories of data that can be described with a
PICTURE clause:

alphabetic

numeric
alphanumeric
alphanumeric edited
numeric edited

To define an item as alphabetic:

Its PICTURE character—-string can only contain the symbols ‘A’,
and/or ‘B’.

Its contents when represented in standard data format must be

any combination of the twenty-six (26) letters of the Roman
alphabet and the space from the COBOL character set.

PAGE &4

~

To define an item as numeric:

Its PICTURE character-string can only contain the symbols ‘9,
‘P’ ‘S’, and ‘V‘. The number of digit positions that can be
described by the PICTURE character—string must range from 1 to
18 inclusive; and

I# unsigned, its contents when represented in standard data
format must be a combination of the Arabic numerals ‘0‘, ‘17,
‘24, '3, ‘'4', ’'B’, ‘&', ‘7', ‘'8B7, ‘?’; if signed, the item
may also contain a ‘+‘, ‘~‘, or other representation of an
operational sign.

To define an item as alphanumeric:

Its PICTURE character—string 1is restricted to certain
combinations of the symbols ‘A’ ‘X’ ‘9?‘’, and the item is
treated as if the character—-string contained all X’s. A
PICTURE character—string which contains all A’s or all 9’s
does not define an alphanumeric item; and

Its contents, when represented in standard data format, are
allowable characters in the computer ‘s character set.

To define an item as alphanumeric edited:

Its PICTURE character~string is restricted to certain
combinations of the following symbols: ‘A, Xy ‘4, ‘B’,
‘0’, and '/’ (stroke);

The character—string must contain at least one ’'B’ and at
least one ‘X’ or at least one ‘O’ (zero) and at least oane ‘X’
or at least one '/’ (stroke) and at least one 'X’;i or

The character—~string must contain at least one ‘0O’ (zero) and
at least one ‘A’ .or at least one ‘/’ (stroke) and at least one
‘A’; and

The contents when represented in standard data format are
allowable characters in the computer‘s character set.

PAGE 65

To define an item as numeric edited:

Its PICTURE character—string is restricted to certain
combinations of the following symbols: ‘B’, ‘/’ (stroke), ‘P’,
N, TT, 0T, R, Ny Ly R, =, '+, 'CRY, ‘DB’, and
the currency symbol. The allowable combinations are determined
from the order of precedence of symbols and the editing rules;
and

The number of digit positions that can be represented in the
PICTURE character—string must range from 1 to 18 inclusive;
and

The character—string must contain at least one ‘0Q‘, ‘B‘, ‘//
(stroke), ‘7, ‘w1, ‘e, ‘0 ‘L, ‘-, ‘CR’, ‘DB, or
currency symbol.

The contents of the character positions of these symbols that
are allowed to represent a digit in standard data format, must
be one of the numerals.

The size of an elementary item, where size means the number of
character positions occupied by the elementary item in standard
data format, is determined by the number of allowable symbols that
represent character positions. An integer which 1is enclosed in
parentheses following the symbeols ‘A‘, ‘, 7, ‘X' ‘9 P’y 'Z°,
‘#7, ‘B’ /'’ (stroke), ‘O, ‘+7, ‘=’s or the currency symbol
indicates the number of consecutive occurrences of the symbol.
Note that the following symbols may appear only once in a given
PICTURE: ‘8‘, 'V’ ‘. ', ‘CR’, and ‘DB’.

The functions of the symbols used to describe an elementary item
are explained as follows:

-Each ‘A’ in the character—~string represents a character
position which can contain only a letter of the alphabet or a
space.

Each ‘B’ in the character—-string represents a character
position into which the space character will be inserted.

PAGE 66

Each ‘P’ indicates an assumed decimal scaling position and is
used to specify the location of an assumed decimal point when
the point is not within the number that appears in the data
item. The scaling position character ‘P’ is not counted in the
size of the data item. &Scaling position characters are counted
in determining the maximum number of digit positions (18) in
numeric edited items or numeric items. The scaling position
character ‘P’ can appear only to the left or right as a
continuvous string of ‘P‘s within a PICTURE description; since
the scaling position character ‘P’ implies an assumed decimal
point (to the 1left of ‘P‘s if ’'P’s are leftmost PICTURE
characters and to the right if ‘P’s are rightmost PICTURE
characters), the assumed decimal point symbol ‘Y’ is redundant
as either the leftmost or rightmost character within such a
PICTURE description. The character ‘P’ and the insertion
character ‘.’ (period) cannot both eccur in the same PICTURE
character—string. If, in any operation involving conversion of
data from one form of internal representation to another, the
data item being converted is described with <the PICTURE
character ‘P‘, each digit position described by a ‘P’ is
considered to contain the value zero, and the size of the data
item is considered to include the digit positions so
described.

The letter ‘8’ is uvsed in a character—string to indicate the
presence, but neither the representation nor. necessarily. the
position of an operational sign; it must be written as the
leftmost character in the PICTURE. The ‘8‘ 1is counted in
determining the size (in terms of standard data format
characters) of elementary items having DISPLAY or
COMPUTATIONAL usage.

The ‘V’ is used in a character—-string to indicate the location
of the assumed decimal point and may only appear once in a
character—-string. The 'V’ does not represent a character
position and therefore is not counted in the size of the
elementary item. When the assumed decimal point is to the
right of the rightmost symbol in the string the 'V’ is
redundant.

Each ’X‘ in the character-string is vused to represent a
character position which contains any allowable character from
the computer’s character set.

Each ‘2’ in a character—string may only be used to represent
the leftmost leading numeric character positions which will be
replaced by a space character when the contents of that
character position is zero. Each ‘Z’ is counted in the size of
the item.

PAGE 67

Each ‘9’ in the character—-string represents a character
position which contains a numeral and is counted in the size
of the item.

Each ‘0’ (zer9) in the character—string represents a character
position into which the numeral zero will be inserted. The ‘0’
is counted in the size of the item.

Each '/’ (stroke) in the character-string represents a
character position into which the stroke character will be
inserted. The ‘/‘ (stroke) is counted in the size of the item.

Each ! {comma) in the character—string represents a
character position into which the character ‘,‘ will be
inserted. This character position is counted in the size of
the item. The insertion character ‘,‘ must not be the last
character in the PICTURE character—string.

When the character e (period) appears in the
character—string it is an editing symbol which represents the
decimal point for alignment purposes and in addition,

represents a character position into which the character ‘.~

will be inserted. The character ‘.’ is counted in the size of
the item. For a given program the functions of the period and
comma are exchanged if the clause DECIMAL-POINT IS COMMA is
stated in the SPECIAL~-NAMES paragraph. In this exchange the
rules for the period apply to the comma and the rules for the
comma apply to the period wherever they appear in a PICTURE
clause. The insertion character ‘.’ must not be the last
character in the PICTURE character—-string.

+, = CR, DB. These symbols are used as editing sign control
symbols. When used, they represent the character position into
which the wediting sign control symbol will be placed. The
symbols are mutually exclusive in any one character-string and
each character used in the symbol is counted in determining
the size of the data item.

Each ‘%’ (asterisk) in the character—-string represents a
leading numeric character position into which an asterisk will
be placed when the contents of that position is zero. Each ’#’
is counted in the size of the item.

The asterisk when used as the zero suppression symbol and the
clause BLANK WHEN ZERO may not appear in the same entry.

PAGE 68

The currency symbol in the character—-string represents a
character position into which a currency symbol is to be
placed. The currency symbol in a character—-string is
represented by either the currency sign or by the single
character specified in the CURRENCY SIGN IS clause in the
SPECIAL—-NAMES paragraph. The currency symbol is counted in the
size of the item.

There are two general methods of performing editing in the PICTURE
clauvse, either by insertion or by suppression and replacement.
There are four types of insertion editing available:

Simple insertion
Special insertion
Fixed insertion
Floating insertion

There are two types of suppression and replacement editing:

The

Zero suppression and replacement with spaces
Zero suppression and replacement with asterisks

type of editing which may be performed upon an item is

dependent upon the category to which the item belongs. The
following table specifies which type of editing may he performed
upon a given category:

A asis e ST et S AR MDD SO G Serie GASle ohems St S At Gl WSS S S AU P PR ALY Gogas US GUISG GEmEs SR LS Sasth b SRR ot soses e v ——— o - s oots somn

iCATEGORY TYPE OF EDITING H
H - e st !
iAlphabetic Simple insertion ‘B’ only !
! - " ot S 4000 o 2 el Sl e e St P S St W S kS P RIS D b S OO B S o . o s s :
{Numeric None {
iAlphanumeric Naone H
iAlphanumeric Simple insevrtion ‘0‘, ‘B, 1
iEdited and ‘/’ (stroke) i
) e 740 S oatn ot . Yo S P iS40 S99 S0 0090 Sl S S S0 S0 St RS O 90 0. Sl om0 S St e AP i s e 064 500 0y S0 Y :
iNumeric All, subject to rules below !
iEdited i

- P) o v e — —y — st aaitt. e St vatte o

Floating insertion editing and editing by zero suppression and
replacement are mutually exclusive in a PICTURE clause. Only one
type of replacement may be used with zero suppression in a PICTURE
clavse.

PAGE 69

Simple Insertion Editing

The *,’ (comma), ‘B’ (space), ‘0‘, (zero), and ‘/’ (stroke) are
vused as the insertion characters. The insertion characters are
counted in the size of the item and represent the position in the
item into which the character will be inserted.

Special Insertion Editing

The ‘.’ (period) is used as the insertion character. In addition
to being an insertion character it also represents the decimal
point for alignment purposes. The insertion character used for the
actuval decimal point is counted in the size of the item. The use
of the assumed decimal point, represented by the symbol 'V’ and
the actual decimal point, represented by the insertion character,
in the same PICTURE character—-string is disallowed. The result of
special insertion editing is the appearance of the insertion
character in the item in the same position as shown in the
character—-string.

Fixed Insertion Editing

The currency symbol and the editing sign control symbols, '+,
‘=’ ‘CR’, ‘DB’, are the insertion characters. Only one currency
symbol and only one of the editing sign control symbols can be
used in a given PICTURE character—string. When the symbols ‘CR’ or
‘DB’ are used they Tepresent two character positions in
determining the size of the item and they must represent the
rightmost character positions that are counted in the size of the
item.

The symbol ‘+/ or ‘-, when used, must be either the leftmost or
rightmost character position to be counted in the size of the
item.

The currency symbol must be the leftmost character position to be
counted in the size of the item except that it can be preceded by
either a "+’ or a ‘-’ symbol.

Fixed insertion editing results in the insertion character

occupying the same character position in the edited item as it
occupied in the PICTURE character—-string.

PAGE 70

Editing sign control symbols produce the following results
depending vupon the value of the data item:

! EDITING SYMBOL IN |} RESULT H
: PICTURE e e o ot e e e e i b e H
! CHARACTER-STRING | DATA ITEM ! DATA ITEM |
! i POSITIVE OR ZERO | NEGATIVE !
§ e e e e e e e | e e e e o -
i + H + ! - !
H - H space ' - H
H CR H 2 spaces i CR }
H DB H 2 spaces : DB !

Floating Insertion Editing

, '

]

The currency symbol and editing sign control symbols, ‘+’ or
are the floating insertion characters and as such are mutually
exclusive in a given PICTURE character—string.

Floating insertion editing is indicated in a PICTURE
character~string by using a string of at least two of the floating
insertion characters. This string of fleoating insertion characters
may contain any of the fixed insertion symbols or have fixed
insertion characters immediately to the 1right of this string.
These simple insertion characters are part of the floating string.

The leftmost character of the floating insertion string represents
the leftmost 1limit of the floating symbol in the data item. The
rightmost character of the floating string represents the
rightmost limit of the floating symbols in the data items.

The second floating character from the 1left represents the
leftmost limit of the numeric data that can be stored in the data
item. Nonzero numeric data may replace all the characters at or to
the right of this limit.

In a PICTURE character—-string, there are only two ways of
representing floating insertion editing. One way is to represent
any or all of the leading numeric character positions on the left
of the decimal point by the insertion character. The other way is
to represent all of the numeric character positions in the PICTURE
character—-string by the insertion character.

PAGE 71

If the insertion characters are only to the left of the decimal ™

point in the PICTURE character—string, the result is that a single .
floating insertion character will be placed into the character
position immediately preceding either the decimal point or the
first nonzero digit in the data represented by the insertion
symbol string, whichever is farther to the left in the PICTURE
character—string. The charuacter positions preceding the insertion
character are replaced with spaces,.

If all numeric character positions in the PICTURE character—-string
are represented by the insertion character, the result depends
upon the value of the data. If the value is zero the entire data
item will contain spaces. If the value is not zero, the result is
the same as when the insertion character is only to the left of
the decimal point,

To avoid truncation, the minimum size of the PICTURE
character—~string for the receiving data item must be the number of
characters in the sending data item: plus the number of
non-floating insertion characters being edited into the receiving
data item; plus one for the floating insertion character.

Zero Suppression Editing

The suppression of leading zeroes in numeric character positions
is indicated by the wuse of the alphabetic character ‘Z’ or the
character ‘#’ (asterisk) as suppression symbols in a PICTURE
character—string. These symbols are mutually exclusive in a given
PICTURE character—-string. Each suppression symbol is counted in
determining the size of the item. If ‘Z’ is used the replacement
character will be the space and if the asterisk is wuwsed. the
replacement character will be ’'#‘,

In a PICTURE character—~string, there are only two ways of
representing zero suppression. One way is to represent any or all
of the leading numeric character positions to the left of the
decimal point by suppression symbols. The other way is to
represent all of the numeric character positions in the PICTURE
character-string by suppression symbols.

If the suppression symbols appear only to the left of the decimal
point, any leading zero in the data which corresponds to a symbol
in the string is rTeplaced by the replacement character.
Suppression terminates at the first nonzero digit in the data
represented by the suppression symbol string or at the decimal
point, whichever is encountered first.

PAGE 72

I# all numeric character positions in the PICTURE character-string
are represented by suppression symbols and the value of the data
is not zero the result is the same as if the suppression
characters were only to the left of the decimal point. I# the
value is zero and the suppression symbol is ‘Z’, the entire data
item will be spaces. I+ the value is zero and the suppression
symbol is ‘#‘, the data item will be all ‘#‘ except for the actual
decimal point.

The symbols ‘+’, ’'=-¢, ‘#/, ‘7, and the currency symbol, when used
as floating replacement characters, are mutually exclusive within
a given character-string.

The picture precedence chart shows the order of precedence when
using characters as symbols in a character—-string. An ‘X’ at an
intersection indicates that the symbol(s) at the top of the column
may precede, in a given character—-string, the symbol(s) at the
left of the row. Arguments appearing in braces indicate that the
symbols are mutually exclusive. The currency symbol is indicated
by the symbol ‘cs’.

At least one of the symbols ‘A’, ’'X‘, ‘24, ‘@ or ‘%', or at
least two of the symbols ’'+7, ‘-‘, or ‘cs’ must be present in a
PICTURE string. _ .

Monfloating insertion symbeols ‘+‘ and ‘-’, floating insertion
symbols ‘Z‘, ‘%#‘, ‘+’, ‘~’, and ‘cs’, and other symbol ‘P’ appear
twice in the PICTURE character precedence chart. The leftmost
column and vuppermost row for each symbol represents its use to the
left of the decimal point position. The second appearance of the
symbol in the chart represents its use to the right of the decimal
peint position.

PAGE 73

[)
H
H
;
!
!
'
H
!
]
!
]
H
2
]
g
:
:
=
N
:
:
:
;
3
;
:
:
=
:
=
1
[]
1
1

Floating
Insertion Symbols

[}
L
1
)
13
t

-

Non-Floating

Insertion Symbols
CALEI LY ILCRIICSILZI I {ZF 1 {+F 1 {+>ICHICH

\Sym—
i2nd\bol

i\lst
1Sym—\

1> | > | %1 x R x < § I>xixxi 1 & {
| == P - - - | wm] we |} ee | e - — o } w=] ~- -} wm] am] aw] o= | «=
i > > 1 | P HEEREEEE
= f o=@ ==l o= o= f o= f oo fom|omefomefon o mmfomm oo | oom | oonfom |
1> | > | x| x P>t >x1 * < | 1 i>x1 1 1 | i
I B B B N e et RN ARSI B B B BN B B B PSRN BEN PSR g
i i R S T SR R [AR
ol Bl Bl Bl Rl B I Rt Bt Bt B B BPS BPA PR BRSR B R B ROy g
i > 1 x| x R N P 11 1)
R e R el ol el ol ol T IR Iin eiy (i RS (SR Ry iy (PSRN RECI JUGI
P> | > | > 1 > | % P> 1> 1 | b 1 it x|
B IR EE A R 2 P N N R
I SR R B B P S B B
N Rl B ol Bl o ol Bl IR R B R B B BN R ETRN BPSU R RSy g
i > x X | X | X > | x| { i f > § > | > | > >
] i [B I B B
o | - - - | m- - e | wm] wme | e - - - | o - - _ - - - - -
- S R T B i i i
BERE IR i I B > | i
w i I D R P i
B B B B B B B B B B B N I T N BT SR AP PPV (R S
~ il I D R P i
BERE R R T N B > 1 x| > | 1> | %
w i N S B I t
- - - -] o= - Lo T R e - - e } - - -] w- - - - -
- i oo P i
d L > | x| x > | x| > P i i i
w R TR i R P I I I
B B B e B B B B S B B N Al IR B RS BN BEES BN BN P
& Pt Pt i S TR R SR S
% 015 1 > | > 15| x P> 1> 1 1] x P P> 1 1 1% x|
v I A A [N T B ([R N TR R T A B
AR R T A T T T
T AR B T B T A N A A T TR B R T T A
N AR B BN AP B BECIN APRY B P IR AET BT N ARSI P B PSR P (P S
Al R S T R T B P P oo
ai | S S AR T R B R R N P
ait i [P R T R S N SR S
= R B P R I T R N P
O B B B B B N Al A B B R I Il Il Bl BT N R B R
A~ S N B i P i oo
P S T R |] P | P
w i T B T | I P [B T
O R B o I e Bl i B BN S IR B BT PSR SR Y S PR P (S
~ 1 I I I P I !
Pl> 13§31 11 | I > | % | % P> | x| x i x | x| x
[S A i i P i
—] - } =~ e | = | m } e | == | e - - e | = - - I A A - — - -
> “ > > 1 “ > “ > > “ > > > > | > > “ > “ 1 x >x |
| b d " > > > “ > “ > i » m > > > > > > > “ > “ > x
b | 1> i3 | x| P> 1 x > 1 5 | x| % |
!] i Qi I f R {
- i { (I T = R TR A T T A R
=S - T BN] | o wniowiocl _1ol>iaio
- i { +i+ il lOININI+TI+IOTIOl | T
o | R i (I B B
£

S A M W EmE W e ME MW W S W WS G @R R e W S M WL G e A MO B MG R MR WS W e S W S S e e M e e

I Z0ZL JO0<CH--Z0 { L JdJOoqCkF=Z0 t OFTuWx

W e W e WG GE GE AR EE EE G R e el R WE W R e W MG G GG W e e MG W MW M M S Rl T M W M e S e e e e

PICTURE Character Precedence Chart
PAGE 74

Sy T o e corn Satis S sS4 000 SO 0000 St ST S O SAIRE SRS SHMS PEY S D Ve TR P90P i SUWS Aot Smt et s el PO SFHAS daiog S Vo AR SV e S A S YUSHS Saret Teved SOTIS SAS SPAD $OMMS Suivy ASVIS SN Po0m et At sem Mot

The USAGE Clause

The USAGE clause specifies the format of a data item in the
computer storage.

FORMAT

[USAGE IS {COMPUTATIONAL 2}

£comp by

{COMPUTATIONAL-12

L e e e T Y

e s v s e, .

e o oven erite o Satin SO B SO LAY S Srems et ooy S

{COMP-3 >
{DISPLAY >
{INDEX >

This clause specifies the manner in which a data item is
represented in the storage of a computer. It does not affect the
use of the data item. although the specifications for some
statements in the Procedure Division may restrict the USAGE clause
of the operands referenced.

The USAGE clause can be written at any level. If the USAGE clause
is written at a group level, it applies to each elementary item in
the group. The USAGE clause of an elementary item cannot
contradict the USAGE clauvse of a group to which the item belongs.

I# the USAGE clause is not specified for an elementary item, or
for any group to which the item belongs, the usage is implicitly
DISPLAY.

A COMPUTATIONAL (COMPUTATIONAL~1, COMPUTATIONAL-3) item represents
a value to be used in computations and must be numeric. If a group
is described as COMPUTATIONAL, then the elementary items in the
group are COMPUTATIONAL. The group itself is not COMPUTATIONAL
(cannot be used in computations.)

PAGE 795

The format of a COMPUTATIONAL item is one decimal digit per

character position <(hexadecimal 00-0%9). If an ‘S’ appears in the
PICTURE character—string, a trailing byte contains the sign with
> 2B being generated for positive and > 2D being generated for
negative. COMPUTATIONAL items will be treated as negative if the
sign character is > 2Di otherwise they will be considered
positive.

The format of a COMPUTATIONAL-1 item (abbreviated COMP-1) is 16
bit two‘s complement signed binary, independent of the number of
nines or appearance of ‘S’ in the PICTURE character~string. The
number of nines is significant when the value is converted to
decimal during data manipulation. The value of a COMPUTATIONAL-1
item ranges between ~32768 and 32747.

The format of a COMPUTATIONAL-3 item is two decimal digits per
character position. -

The PICTURE character—string of a COMPUTATIONAL, COMPUTATIONAL-1
or COMPUTATIONAL-3 item can contain only ‘?‘s, the operational
sign character ‘S‘, the implied decimal point character ‘V’, one
or more ‘P’s. Since a COMPUTATIONAL-1 item must have zero scale it
cannot contain any ‘P‘s in its PICTURE character string and if it
has a 'V’ in its PICTURE character—string the ‘V’ must be the
rightmost character.

The USAGE IS DISPLAY clause indicates that the format of the data
is ASCII.

An elementary item described with the USAGE IS INDEX clause is
called an index data item and contains a value which must
correspond to an occurrence number of a table element. If a group
item is described with the USAGE IS INDEX clause the elementary
items in the group are all index data but the group item name
cannot be used in the SET statement or in a relation condition.

An index data item can be referenced explicitly only in a SET
statement or a relation condition.

The initial value of an index item is undefined.

The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE and BLANK WHEN ZERO
clavses cannot be wused to describe group or elementary items
described with the USAGE IS INDEX clause.

An index data item can be part of a group which is referred to 1in
a MOVE or input-output statement, in which case no conversion will
take place.

The external and internal format of an index data item is the same
as a COMPUTATONAL~1 item.

PAGE 76

N

The SIGN Clause

The SIGN clause specifies the position and the mode of
representation of the operational sign when it is necessary ¢to
describe these properties explicitly.

FORMAT

[SIGN IS51 {TRAILING} [SEPARATE CHARACTER]

o o — . v oo o sann e oo oo o o o tpo St o

The optional SIGN clause, if present, specifies the position and
the mode of representation of the operational sign for the numeric
data description entry to which it applies, or for each numeric
data description entry subordinate to the group to which it
applies. The SIGN clause applies only to numeric data description
entries whose PICTURE contains the character ‘S°.

The operational sign will be presumed to be the trailing character
position of the elementary numeric data item; this character
position is not a digit position.

The letter ‘8’ in a PICTURE character—string is counted in
determining the size of the item (in terms of standard data format
characters).

The operational signs for positive and negative are the standard
data format characters ‘+‘ and ‘~‘, respectively.

The numeric data description entries to which the SIGN clause
applies must be described as usage is DISPLAY.

At most one SIGN clause may apply to any given numeric data
description entry.

PAGE 77

The OCCURS Clause

The OCCURS clause eliminates the need for separate entries for

repeated data items and supplies information required for the
application of subscripts or indices.

FORMAT 1

OCCURS integer—-1 TIMES

LINDEXED BY index—name~1 [, index—-name—2]1 ...]

FORMAT 2

OCCURS integer—-1 TO integer—-2 TIMES DEPENDING ON data-name-—1

LINDEXED BY index—name—-1 [, index-name-221 ...]

B e Lo

The OCCURS clause is used in defining tables and other homogeneous
sets of repeated data items. Whenever the OCCURS clause is wused,
the data-name which 1is the subject of this entry must be either
subscripted or indexed whenever it is referred to in a statement.
Further, if the subject of this entry is the name of a group item,
then all data-names belonging to the group must be subscripted or
indexed whenever they are used as operands, except as the object
of a REDEFINES clause.

The OCCURS clause cannot be specified in a data description entry
that:

Has an 01, &6, 77, or an 88 level—-number.
Descrihes an item whose size is variable. The size of an item
is wvariable if the data description of any subordinate item
contains Format 2 of the OCCURS clausae.

Except for the OCCURS clause itself, all data description clauses

associated with an item whose description includes an OCCURS
clause apply to each occurrence of the item described.

PAGE 78

The number of occurrences of the subject entry is defined as
follows:

In Format 1, the value of integer—1 represents the exact
number of occurrences.

In Format 2, the current value of the data item referenced by
data~name~1 represents the number of occurrences.

This format specifies that the subject of this entry has a
variable number of occurrences. The value of integer-2
represents the maximum number of occurrences and the value
of integer—~1 represents the minimum number of occurrences.
This does not imply that the length of the subject of the
entry is wvariable, but that the number of occurrences is
variable.

The value of the data item referenced by data-name—-1 must
fall within the range integer—~1 through integer-2.
Reducing the value of the data item referenced by
data—-name—1 makes the contents of data items, whose
occurrence numbers now exceed the value of the data item
referenced by data—name-—1, unpredictable.

Where both integer—1 and integer—-2 are used, the value of
integer—1 must be less than the value of integer-2.

The data description of data-name—~1 must describe a
positive integer. Data-name—~1 may be qualified.

A data description entry that contains Format 2 of the
OCCURS clause may only be +followed, within that record
description, by data description entries which are
subordinate to it.

When a group item, having subordinate to it an entry that
specifies Format 2 of the OCCURS clause, is referenced, only that
part of the table area that is specified by the value of
data-name—1 will be used in the operation.

An INDEXED BY phrase is required if the sub ject of this entry, or
an entry subordinate to this entry, is to be referred to by
indexing. The index—name identified by this clause is not defined
elsewhere since its allocation and format are dependent on the
hardware, and not being data, cannot be associated with any data
hierarchy.

PAGE 79

The SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment of an elementary
item on an even byte boundary.

FORMAT

{SYNCHRONIZED} CLEFT 1]

{SYNC > [RIGHT]

P s e o o

This clause specifies that the subject data item is to be aligned
in the computer such that no other data item occupies any of the
character positions between the leftmost and rightmost natural.
boundaries delimiting this data item. If the number of character
positions required to store this data item is less than the number
of character positions between those natural boundaries, the
unused character positions (or portions thereof) must not be wused
for any other data item. Such unused character positions, however,
are included in:

The size of any group item(s) to which the elementary item
belongs; and

The character positions redefined when this data item is the
object of a REDEFINES clause.

SYNCHRONIZED LEFT specifies that the elementary item is to be
positioned such that it will begin at the left character position
of the next available even byte. If the data item contains an odd
number of bytes, one trailing byte of FILLER is implied.

SYNCHRONIZED not followed by either RIGHT or LEFT is equivalent to
the clause SYNCHRONIZED LEFT.

SYNC is an abbreviation for SYNCHRONIZED.
This clause may only appear with an elementary item.
SYNCHRONIZED RIGHT specifies that the elementary item 1is to be

positioned such that it will terminate on the right character
position of an integral even byte boundary. If the data item

contains an odd number of bytes, a leading byte of FILLER is -

implied.

PAGE 80

Whenever a SYNCHRONIZED item is referenced in the source program,
the original size of the item: as shown in the PICTURE clause, is
used in determining any action that depends on size, such as
Justifiction: truncation or overflow.

If the data description of an item contains the SYNCHRONIZED
clavuse and an operational sign, the sign of the item appears in
the normal operational sign position. regardless of whether the
item is SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT.

When the SYNCHRONIZED clause is specified in a data description
entry of a data item that also contains an OCCURS clause, or in a
data description entry of a data item subordinate to a data
description entry that contains an OCCURS clause, then:

Each occurrence of the data item is SYNCHRONIZED.

Any implicit FILLER generated for other data items within that
same table are generated for each occurrence of those data
items.

Records of a file and index data items are auvtomatically
synchronized left. Records and noncontiguous data-items in
working-storage begin on the next available byte unless the first
elementary item is synchronized.

The format on external media of records or groups containing
elementary items described with the SYNCHRONIZED clause includes
any implied FILLER bytes.

When <the data item preceding a data item described with the
SYNCHRONIZED clause does not terminate on a byte whose address is
even, then one implied FILLER byte is generated. Such
avtomatically generated FILLER positions are included in:

The size of any group to which the FILLER item belongs; and
The number of character positions allocated when the group

item of which the FILLER item is a part appears as the object
of a REDEFINES clause.

PAGE 81

The JUSTIFIED Clause

The JUSTIFIED clause specifies nonstandard positioning of data
within a receiving data item.

FORMAT

{JUSTIFIEDY RIGHT

o 1o o T G aootp oo g s

When a receiving data item is described with the JUSTIFIED clause
and the sending data item is larger than the receiving data item
the leftmost characters are ¢truncated. When the receiving data
item is described with the JUSTIFIED clause and it is larger than
the sending data item, the data is aligned at the rightmost
character position in the data item with space~fill for the
leftmost character positions.

When the JUSTIFIED clause is omitted, the standard rules for
aligning data within an elementary item apply.

The JUSTIFIED clavuse cannot be specified for any data item
described as numeric or for which editing is specified.

The JUSTIFIED clavse can be specified only at the elementary item
level.

JUBT is an abbreviation for JUSTIFIED.

PAGE 82

The BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause permits the blanking of an item when
its valvue is zero.

FORMAT

BLANK WHEN ZERO

The BLANK WHEN ZERO clause can be used only for an elementary item
whose PICTURE is specified as numeric or numeric edited.

The BLANK WHEN ZERQO clause cannot appear in the same entry with a
PICTURE clause having an asterisk as the zero suppression suymbol.

When the BLANK WHEN ZERO clause is used, the ditem will contain
nothing but spaces if the value of the item is zero.

When the BLANK WHEN ZERO clause is used for an item whose PICTURE

is numeric, the category of the item is considered to be numeric
edited.

PAGE 83

The VALUE IS Clause

The VALUE IS clause defines the initial value of working storage
items, and the values associated with a condition—-name.

FORMAT 1

VALUE IS literal

o s, crvee seare atmmn

FORMAT 2

{VALUE I8 1} literal-1 [{THROUGH} literal-2]

The VALUE clause cannot be stated for any items whose size is
variable.

A signed numeric literal must have associated with it a signed
numeric PICTURE character-string.

All numeric literals in a VALUE clause of an item must have a
value which is within the range of values indicated by the PICTURE
clavse, and must not have a value which would require truncation
of nonzero digits. Nonnumeric literals in a VALUE clause of an
item must not exceed the size indicated by the PICTURE clause.

The words THRU and THROUGH are equivalent.

The VALUE clause must not conflict with other clauses in the data
description of the item or in the data description within the
hierarchy of the item. The following rules apply:

1. I# the category of the item is numeric, all literals in the
VALUE clause must be numeric. If the literal defines the valve
of a working storage item, the literal is aligned in the data
item according to the standard alignment rules.

PAGE 84

2. I# the category of the item is alphabetic, alphanumeric,
alphanumeric edited or numeric edited, all literals in the
VALUE clause must be nonnumeric 1literals. The literal is
aligned in the data item as if the data item had been
described as alphanumeric. Editing characters in the PICTURE
clause are included in determining the size of the data item
but have no effect on initialization of the data item.
Therefore, the VALUE of an edited item 1is presented in an
edited form.

Initialization takes place independent of any BLANK WHEN ZERO or
JUSTIFIED clause that may be specified.

A figurative constant may be substituted in both Format 1 and
Format 2 wherever a literal is specified.

Condition—-Name Rules

In a condition~name entry, the VALUE clause is required. The VALUE
clavse and the condition-name itself are the only two clauses
permitted in the entry. The characteristics of a condition—name
are implicitly those of its conditional variable.

Format 2 can be wuvsed only in connection with condition—names.

Wherever the THROUGH (THRU) phrase is used, literal—-1 must be less
than literal-2, literal-3 less than literal—-4, etc.

Data Description Entries Other Than Condition—Names

Rules governing the uvse of ¢the VALUE <clause differ with the
respective sections of the Data Division:

In the File Section, the VALUE clause may be used only in
condition-name entries.

In the Working-S5torage Section, the VALUE clause must be wused
in condition-name entries. The VALUE clause may also be used
to specify the initial value of any other data item; in which
case the clause causes the item to assume the specified value
at the start of the object program. If the VALUE clause is not
used in an item’s description, the initial value is undefined.

In the Linkage Section, the VALUE clause may be used only in
condition-name entries.

PAGE 85

The VALUE clause wmust not be stated in a data description entry
that contains an OCCURS clause, or in an entry that is subordinate
to any entry containing a REDEFINES clause. This 7tule does not
apply to condition-name entries.

I+ the WVALUE clause is used in an entry at the group level. the
literal must be a figurative constant or a nonnumeric literal, and
the group area is initialized without consideration for the
individuval elementary or group items contained within this group.
The VALUE clause cannot be stated at the subordinate levels within
this group.

The VALUE clause must not be written for a group containing items

with descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE
(other than USAGE IS DISPLAY).

PAGE 86

The RENAMES Clause

The RENAMES clause permits alternative, possibly overlapping,
groupings of elementary items.

FORMAT

&4 data-name-—1;

RENAMES data-name-2 [{THROUGH} data-name-3].

- coies S s s o e o e apeno vottn sovas w0090

NOTE: Level-number &6, data-name-1 and the semicolon are shown
in the above format to improve clarity. Level-number and
data-name—1 are not part of the RENAMES clause.

All RENAMES entries referring to data items within a given logical
record must immediately follow the last data description entry of
the associated record description entry.

Data-name-2 and data-name—-3 must be names of elementary items or
groups of elementary items in the same logical record, and cannot
be the same data-name. A 6646 level entry cannot rename another 66
level entry nor can it rename a 77, 88, or 01 level entry.

Data-name-1 cannot be wused as a qualifier, and can only be
qualified by the names of the associated level 01 or FD entries

Neither data-name-2 nor data-name-3 may have an DCCURS clause in
its data description entry nor be subordinate to an item that has
an OCCURS clause in its data description entry.

The beginning of the area described by data-name-3 must not be to
the left of the beginning of the area described by data-name-2.
The end of the area described by data-name—~3 must be to the right
of the end of the area described by data-name—-2. Data-name-3,
therefore, cannot be subordinate to data-name-2.

Data-name-2 and data-name-3 may be qualified.
None of the items within the range, including data-name-2 and

data-name-3, if specified. can be an item whose size 1is variable
as defined in the OCCURS clause.

PAGE 87

One or more RENAMES entries can be written for a logical record.

When data-name-3 is specified, data—name~1 is a group item which
includes all elementary items starting with data-name-2 (if
data-name-2 is an elementary item) or the first elementary item in
data-name-2 (if data-name-2 is a group item), and concluding with
data-name-3 (if data-name-3 is an elementary item) or the last
elementary item in data-name-3 (if data-name-3 is a group item).

When data-name-3 is not specified. data-name-2 can be either a
group or an elementary item:; when data-name~2 is a group item,
data-name~1 is treated as a group item, and when data-name-2 is an
elementary item, data—-name—1 is treated as an elementary item.

The words THRU and THROUGH are equivalent.

PAGE 88

DATA STRUCTURES

Classes of Data

The five categories of data items (see the PICTURE Clause) are
grouped into three classes:

alphabetic
numeric
alphanumeric

For alphabetic and numeric, the classes and categories are
SYnonymous.

The alphanumeric <class includes the categories of slphanumeric
edited, numeric edited and alphanumeric (without editing).

Every elementary item except for an index data item belongs to one
of the classes and further to one of the categories. The class of
a group item is treated at object time as alphanumeric regardless
of the class of elementary items subordinale to that group item.

The following chart depicts the relationship of ¢the class and
categories of data items:

Numeric Edited
Alphanumeric Edited
Alphanumeric

v aa M it e cabty e S1ats G o bt W - —— - - o - —

ILEVEL OF ITEM | CLASS i CATEGORY H
{ =~ e e e | !
H { Alphabetic { Alphabetic :
H { Numeric ! Numeric !
! Elementary e e el } o e e e i e e e H
: { Alphanumeric | Numeric Edited :
H H ! Alphanumeric Edited |
H ! i Alphanumeric ;
Nonelementary | Alphanumeric | Alphabetic i
{Group) H it Numeric H

PAGE 89

Representation of Numeric Items

The value of a numeric item may be represented in either binary,
decimal or packed decimal form depending on the USAGE clause
associated with the item. There are two ways of expressing
decimal: DISPLAY and COMPUTATIONAL. Binary is COMPUTATIONAL-1.
Packed decimal is COMPUTATIONAL-3.

The selection of the proper representation is dependent upon the
usage of the numeric item. Items which must be used for input and
output should be of DISPLAY wusage to eliminate conversions to
external forms. For efficiency of arithmetic operations,
COMPUTATIONAL, COMPUTATIONAL-1, or COMPUTATIONAL-3 should be used

To reduce conversions and increase efficiency, types should not be
mixed in operations except where required by program needs.

Representation of Algebraic 8igns

Algebraic signs fall into two categories:

operational signs which are associated with signed numeric
data items, and signed numeric 1literals to indicate their
algebraic properties; and

editing signs which appear to identify the sign of the item.

For DISPLAY. COMPUTATIONAL, and COMPUTATIONAL-3, an wunsigned
numeric item is assumed to have an operational sign which is
positive and will receive the absolute value of signed items. A
signed numeric item maintains the operational sign as a separate
trailing character.

For COMPUTATIONAL-1 (which is always signed), the operational sign
is maintained as part of the item in two’s complement signed
binary form.

Editing signs are inserted into a data item through the use of the
sign control symbols of the PICTURE clause.

PAGE <90

Standard Alignment Rules

The standard rules of positioning data within an elementary item
depend on the category of the receiving item:

I# the receiving data item is described as numeric:

a. The data 1is aligned by decimal point and is moved to the
receiving character positions with zero £ill or truncation
on either end as required.

b. When an assumed decimal point is not explicitly specified,
the data item is treated as if it had an assumed decimal
point immediately following its rightmost character and is
aligned as in a. above.

I# the receivaing data item is a numeric edited data item: the
data moved to the edited data item is aligned by decimal point
with zero—fill or truncation at either end as required within
the receiving character positions of <the data item, except
where editing requirements cause replacement of the leading
Zeros.

I# the receiving data item is alphanumeric (other <than a
numeric edited data item), alphanumeric edited or alphabetic,
the sending data is moved to the receiving character positions
and aligned at the leftmost character position in the data
item with space-£ill or truncation to the right, as required.

If the JUSBTIFIED clause is specified for the receiving item. these
standard rules are modified as described in the JUSTIFIED clause.

PAGE <1

QUALIFICATION

Every wuser—-specified name that defines an element in a COBOL
source program must be unique, either because no other name has
the identical spelling and hyphenation, or because the name exists
within a hierarchy of names such that references to the name can
be made unique by mentioning one or more of the higher levels of
the hierarchy. The higher levels are called qualifiers and this
process that specifies uniqueness is called qualification. Enough
qualification must be mentioned to make the name unique: however,
it may not be necessary to mention all levels of the hierarchy.
Within the Data Division, all data-names used for qualification
must be associated with a 1level indicator or a level-number.
Therefore, two identical data-names must not appear as entries
subordinate to a group item unless they are capable of being made
unique through qualification.

In the hierarchy of qualification, names associated with a level
indicator are the most significant, then those names associated
with level-number 01, then names associated with level-number 02,

.+ 49. The most significant name in the hierarchy must be unique
and cannot be gqualified.

Qualification is performed by following a data-name, by one or
more phrases composed of a qualifier preceded by IN or OF. IN and
OF are logically equivalent.

FORMAT 1

{data-name-1)} [{OF} data-name-2 1...

{condition—-name} J{IN}

FORMAT 2

paragraph-name [{0OF) section—namel

{IN}

PAGE 92

The rules for qualification are as follows:

1.

Each qualifier must be of a successively higher level and
within the same hierarchy as the name it qualifies.

The same name must not appear at two levels in a hierarchy.

I+ a data name 1is assigned to more than one data item in a
source program, the data—name must be qualified each time it
is referred to in the Procedure, Environment. and Data
Divisions (except in the REDEFINES clause where qualification
is unnecessary and must not be used.)

A paragraph—-name must not be duplicated within a section. When
a paragraph-name is qualified by a section-name, the word
SECTION must not appear. A paragraph—name need not be
qualified when referred to from within the same section.

A data-name cannot be subscripted when it is being used as a
qualifier.

A name can be qualified even though it does not need
qualification: if there is more than one combination of
qualifiers that ensures uniqueness, then any such set can be
used. The complete set of qualifiers for a data-name must not
be the same as any partial set of qualifiers for another
data—-name. Qualified data-names may have any number of
qualifiers up to a 1limit of 49.

PAGE 93

SUBSCRIPTING

Subscripts can be vused only when reference is made to an
individual element within a list of a table of like elements that
have not been assigned individual data-names (see The OCCURS
Clause).

The subscript can be represented either by a numeric literal that
is an integer or by a data-name. The data name must be a numeric
elementary item that represents an integer. When the subscript is
represented by a data—-name, the data-name may be qualified but not
subscripted.

The subscript may be signed and, if signed, it must be positive.
The lowest possible subscript value is 1. This value points to the
first element of the table. The next sequential elements of the
table are pointed to by subscripts whose values are 2, 3, ...n.
The highest permissible subscript value, in any particular case,
is the maximum number of occurrences of the item as specified in
the OCCURS clause.

The subscript, or set of subscripts, that identifies the table
element is delimited by the balanced pair of separators, left
parenthesis and rtight parenthesis, following the table element
data-name. The table element data-name appended with & subscript
is called a subscripted data-name or an identifier. When more than
one subscript is required, they are written in the order of
successively less inclusive dimensions of the data organization.

FORMAT

{data-name } (subscript—-1 [subscript-2 [,subscript-311)
{condition-name))

PAGE 94

INDEXING

References can be made to individual elements within & table of
like elements by specifying indexing for that reference. An index
is assigned to that level of the table by wusing the INDEXED BY
phrase in the definition of a table. A name given in the INDEXED
BY phrase is known as an index-name and is used to rtefer to the
assigned index. The value of an index corresponds to the
occurrence number of an element in the associated table. An
index-name must be initialized before it 1is wused as a table
reference. An index—-name can be given an initial value by a SET
statement, or a FORMAT 4 PERFORM statement.

Direct indexing is specified by using an index-name in the form of
a subscript. Relative indexing is specified when the index—-name is
followed by the operator + or -, followed by an unsigned integer
numeric literal all delimited by the balanced pair of separators,
left parenthesis and rvight parenthesis, following the table
element data-name. The occurrence number resulting from relative
indexing is determined by incrementing (where the operator + is
vsed) or decrementing {(when the operator - is vused), by the valve
of the literal, the occurrence number represented by the value of
the index. When more than one index-name 1is required. they are
written in the order of successively less inclusive dimensions of
the data organization.

At the time of execution of a statement which refers to an indexed
table element, the value contained in the index referenced by the
index-name associated with the table element must neither
correspond to a value less than one (1) nor to a value greater
than the highest permissible occurrence number of an element of
the associated table. This restriction also applies to the valve
resultant from relative indexing.

FORMAT
{data—namel ({index-name—1 [{+} literal-21%
{condition—-name) {literal-1 {-¥ >

[:{index-name—-2 [{+) literal—-41}
{literal-3 {3 >

C,{index—-name-3 [{+} literal-61211)
{literal~-5 {-> }

PAGE 95

IDENTIFIER

An identifier is a term used to reflect that a data-name, if not
vnique in a program, must be followed by a syntactically correct
combination of qualifiers, subscripts or indices necessary to
ensure uniqueness. The general formats for identifiers are:

FORMAT 1
data-name—1 [{OF} data-name-21 ... [(subscript—~i
{INY}
[,subscript-2 [,subscript—311)1
FORMAT 2
data-name-1 [{0OF} data—-name-2] ... [({index-name~1 [{+) literal-21}
- {literal-1 {-> ¥

{IN}

[, {index-name-2 [{+} literal—-4]}
{literal-3 {-2 ¥

C:{index—name-3 [{+) literal-613>11)1
{literal-5 {-> ¥

Restrictions on qualification, subscripting and indexing are:

A data-name must not itself be subscripted nor indexed when
that data-name is being wused as an index, subscript or
qualifier.

Indexing is not permitted where subscripting is not permitted.

An index may be modified only by the SET and PERFORM
statements. Data items described by the USAGE 1S5 INDEX clause
permit storage of the values associated with index—-names as
data in a form specified by the compiler. Such data items are
talled index data items.

Literal-1, literal-3, literal-5 in the above format must be

positive numeric integers. Literal-2:; literal—-4, literal-é.
must be unsigned numeric integers.

PAGE @6

CONDITION-NAME

Each condition—name must be unique. or be made wunique through
qualification and/or indexing, or subscripting.

If qualification is wused to make a condition-name unique, the
associated conditional variable may be wused as the first
qualifier. I+ qualification is wused, the hierarchy of names
associated with the conditional variable or the conditional
variable itself must be used to make the condition-name unique.

If references to a conditional variable require indexing or
subscripting, then references to any of its condition-names also
require the same combination of indexing or subscripting.

The format and restrictions on the combined use of qualification,
subscripting, and indexing of condition-names is exactly that of
‘identifier’ except that data-name-1 is - replaced by
condition-name-1.

In the general formats, ‘condition-name’ refers to a
condition-name qualified, indexed or subscripted, as necessary.

PAGE 97

TABLE HANDLING

Tables of data are common components of business data processing
problems. Although items of data that make up a table could be
described as contiguous data items, there are two reasons why this
approach is not satisfactory. First, ¢from a documentation
standpoint, the underlying homogeneity of the items would not be
readily apparent; and second, the problem of making available an
individual element of such a table would be severe when there is a
decision as to which element is to be made available at object
time.

Tables composed of contiguous data items are defined in COBOL by
including the OCCURS clause in their data description entries.
This clavse specifies that the item is to be repeated as many
times as stated. The item is considered to be a table element and
its name and description apply to each repetition or occurrence.
Since each occurrence of a table element does not have assigned to
it a unique data-name: reference to a desired occurrence may be
made only by specifying the data-name of the table element
together with the occurrence number of the desired table element.
Subscripting and indexing are the two methods that are used to
specify the occurrence number of a desired table element.

Table Definition

To define a one~dimensional table, the programmer uses an OCCURS
clavuse as part of the data description of the table element, but
the OCCURS clause must not appear in the description of group
items which contain the table element.

Example 1:
01 TABLE-1.
02 TABLE-ELEMENT OCCURS 20 TIMES.
03 NAME
03 SSAN

Defining a one—-dimensional table within each occurrence of an
element of another one-dimensional table gives rise to a
two~-dimensional table. To define a two—dimensional table, then, an
OCCURS clause must appear in the data description of the element
of the table, and in the description of only one group item which
contains that table. In ¢the description of a three~dimensional
table, the OCCURS clause should appear in the data description of
2 nested group items which contain the element. In COBOL., tables
of up to 3 dimensions are permitted.

PAGE 98

Example 2 shows a table which has one dimension for
CONTINENT~NAME, two dimensions for COUNTRY-NAME, and three
dimensions for CITY-NAME and CITY-POPULATION. The table includes
100,510 data items——10 for CONTINENT-NAME., 500 for COUNTRY-NAME,
50, 000 for CITY-NAME, and 350,000 for CITY-POPULATION. Within the
table <there are ten occurrences of CONTINENT-NAME. Within each
CONTINENT—-NAME there are 50 occurrences of COUNTRY-NAME and within
each COUNTRY-NAME there are one hundred occurrences of CITY-NAME
and CITY-POPULATION.

Example 2:

01 CENSUS-TABLE.
05 CONTINENT-TABLE OCCURS 10 TIMES.
10 CONTINENT-NAME PIC XXXXXX
10 COUNTRY-TABLE OCCURS 50 TIMES.
15 COUNTRY-NAME PIC XXXXXXXX.
15 CITY-TABLE OCCURS 100 TIMES.
20 CITY-NAME PIC XXXXXXXXXX.
20 CITY-POPULATION PIC 999999999999.

References to Table Items

Whenever the user refers to a table element, the reference must
indicate which occurrence of the element is intended. For access
to a one-dimensional table, the occurrence number of the desired
element provides complete information. For access to tables of
more than one dimension, an occurrence number must be supplied for
each dimension of the table accessed. In Example 2 then, a
reference to the 4th CONTINENT-NAME would be complete, whereas a
reference to +the 4th COUNTRY-NAME would not. To refer ¢to

COUNTRY-NAME. which is an element of a two-dimensional table, the
" user must refer to, for example, the 4th COUNTRY-NAME within the
&th CONTINENT-TABLE.

One method by which occurrence numbers may be specified is ¢to
append one or more subscripts to the data-name. A subscript is an
integer whose value specifies the occurrence number of an element.
The subscript can be Tepresented either by a literal which is an
integer or by & data-name which is defined elsewhere as & numeric
elementary item with no character positions to the right of the
assumed decimal point. In either case, the subscript, enclosed in
parentheses, is written immediately following the name of the
table element. A table reference must include as many subscripts
as there are dimensions in the table whose element is being
referenced. That is, there must be a subscript for each OCCURS
clauvse in the hierarchy containing the data-name, including the
data-name itsel#f. In Example 2, references to CONTINENT-NAME
require only one subscript: reference to COUNTRY-NAME requires
two, and references to CITY-NAME and CITY-POPULATION require
three.

PAGE 99

When more than one subscript is required, they are written in —

order of successively less inclusive dimensions of the data
organization. When a data-name is used as a subscript, it may be
used to refer to items in many different tables. These tables need
not have elements of the same size. The data-name may also appear
as the only subscript with one item and as one of two or three
subscripts with another item. Also, it is permissible to mix
literal and data—-name subscripts, for example: CITY-POPULATION
(10, NEWKEY., 42).

Another method of rTeferring to items in a table is indexing. To
use this technique, the programmer assigns one or more index-names
(defined with the INDEXED-BY phrase of the OCCURS clause) to an
item whose data description contains an OCCURS clause. There is no
separate entry to describe the index—name since its definition is
completely hardware—oriented and it is not considered data per se.
At obgject time the contents of the index—name will correspond to
an occurrence number for that specific dimension of the table to
which the index-name was assigned. The initial value of an
index-name at object time is not determinable and the index-name
must be initialized by the SET statement before use.

When a reference is made to a table element, or to an item within
a table element, and the name of the item is followed by its
related index—-name or names in parentheses, then each occurrence
number required to complete the reference will be obtained from
the respective index-name. The index-name thus acts as a subscript
whose value is wused in any table reference that specifies
indexing.

PAGE 100

VI

PROCEDURE DIVISION

PAGE 101

THE PROCEDURE DIVISION

The Procedure Division must be included in every COBOL source
program. This division may contain declaratives and nondeclarative
procedures.

The Procedure Division is identified by and must begin with the
following header:

PROCEDURE DIVISION [USING data—name-1 [,data-name-21 ...1 .

The USING phrase is present if and only if the object program is
to function under the control of a CALL statement, and the CALL
statement in the calling program contains a USING phrase.

Each of the operands in the USING phrase of the Procedure Division
header must be defined as a data item in the Linkage Section of
the program in which this header occurs, and it must have a 01 or
77 level-number.

Within a called program. Linkage Section data items are processed
according to their descriptions given in the called program 0Of
those items defined in +the Linkage Section only data-name-1,
data-name-2., items subordinate to these data—-names, and
condition-names and/or index—-names associated with such data-names
and/or subordinate data items, may be referenced in the Procedure
Division.

When the USING phrase is present, the object program operates as
if data-name—-1 of the Procedure Division header in the called
program and data-name-1 in the USING phrase of the CALL statement
in the calling program refer to a single set of data that is
equally available to both the called and calling programs. Their
definitions must contain the same data descriptions; however:. they
need not be the same name. In like manner, there is an equivalent
relationship between data-name-2, ..., in the USING phrase of the
called program and data-name-2, ..., in the USING phrase of the
CALL statement in the calling program. A data-name must not appear
more than once in the USING phrase in the Procedure Division
header of the called program: however, a given data—-name may
appear more than once in the same USING phrase of a CALL
statement.

PAGE 102

Structure

The body of the Procedure Division must conform to one of the
following formats:

FORMAT 1

PROCEDURE DIVISION [USING data—-name-1 [,data-name-21...1.

[DECLARATIVES.

o o o o an oot oy s B o S

{section-name SECTION [segment-number]. declarative~sentence

o - oot aares dsive st

[paragraph-name. [sentencel ...1 ...2> ...

END DECLARATIVES.]

.y - o S Y g At o S T V00 e S

[paragraph-name. [sentencel ...1

CEND PROGRAMI.

FORMAT 2

PROCEDURE DIVISION [USING data-name~1 [, data-name-21... 1.

{paragraph—-name. [sentencel
LEND PROGRAMI.

The segment-number must be an integer ranging in valvue from O
through 127.

If the segment-number is omitted from the section header., the
segment-—number is assumed to be O.

Sections in the declaratives must contain segment-numbers less
than 50.

PAGE 103

All sections which have ¢the same segment—-number constitute a —

program segment. Sections with the same segment-number must be
physically contigquous in the source program.

Segments with segment-numbers O through 49 belong to the fixed
portion of the object program. Segments with segment-numbers 50
through 127 are independent segments. Independent segments must
follow fixed segments.

Declaratives

Declarative sections must be grouped at the beginning of the
Procedure Division preceded by the key word DECLARATIVES and
followed by the key words END DECLARATIVES.

Procedures

A procedure is composed of a paragraph, or group of successive
paragraphs, or a section, or a group of successive sections within
the Procedure Division. If one paragraph is in a section, then all
paragraphs must be in sections. A procedure-name is a word used to
refer to a paragraph or section. It consists of a paragraph-name
(which may be qualified), or a section—name.

A section consists of a section header followed by zero, or more
successive parvagraphs. A section endes immediately before the next
section or at the end of the Procedure Division or, in the
declaratives portion of the Procedure Division, at the keg words
END DECLARATIVES.

A paragraph consists of a paragraph—name followed by a period and
a space and by zero, or more successive sentences. A paragraph
ends immediately before the next paragraph-name or section-name or
at the end of the Procedure Division or. in the declaratives
portion of the Procedure Division, at the key words END
DECLARATIVES. A paragraph-name must not be duplicated within a
section.

Execution

Execution begins with the +first statement of the Procedure
Division, excluding declaratives. Statements are then executed in
the order in which they are presented for compilation, except
where the rules indicate some other order.

PAGE 104

PROCEDURE REFERENCES

A procedure is referred to by its paragraph-name or section—-name.
Paragraph-names may be qualified by the section-name of the
section containing the paragraph, whether or not it needs
qualification, When referring to a section—name or when using a
section-name as a qualifier, the word SECTION must not appear.
Qualification is performed by following a paragraph—-name with a
section-name preceded by IN or OF. IN and OF are logically
equivalent. The general format for paragraph qualification is:

paragraph-name [{0OF} section-namel
{INY

A paragraph-name need not be qualified when referred to from
within the same section or when the paragraph-name is unique

Explicit and Implicit Transfers of Controel

The mechanism that controls program flow +{ransfers control from
statement <to statement in the sequence in which they were written
in the source program unless an explicit <¢transfer of control
overrides this sequence or there is no next executable statement
to which control can be passed. The ¢transfer of control from
statement to statement occurs without the writing of an explicit
Procedure Division statement, and therefore, is an implicit
transfer of control.

COBOL provides both explicit and implicit means of altering the
implicit control transfer mechanism.

In addition to the implicit transfer of control between
consecutive statements, implicit transfer of control also occurs
when the normal flow is altered without the execution of a
procedure branching statement. COBOL provides the following types
of implicit control +flow alterations which override the
statement—-to-statement transfers of control:

I# a paragraph is being executed under control of another
COBOL statement (for example, PERFORM and USE) and the
paragraph is the 1last paragraph in the range of the
controlling statement, then an implied transfer of control
occurs from the last statement in the paragraph to the control
mechanism of the last executed controlling statement. Further.
if a paragraph is being executed under the control of a
PERFORM statement which causes iterative execution and that
paragraph is the first paragraph in the range of that PERFORM
statement, an implicit transfer of control occurs between the
control mechanism associated with that PERFORM statement and

PAGE 105

the first statement in that paragraph for each iterative
execution of the paragraph.

When any COBOL statement is executed which results in the
execution of a declarative section, an implicit transfer of
control to the declarvative section occurs. Note that another
implicit transfer of control occurs after execution of the
declarative.

An explicit transfer of control consists of an alteration of the
implicit control +transfer mechanism by the execution of a
procedure branching or conditional statement. An explicit transfer
of control <can be <caused only by the execution of a procedure
branching or conditional statement. The execution of the procedure
branching statement ALTER does not in itself constitute an
explicit transfer of control. but affects the explicit transfer of
control ¢that occurs when the associated 60 TO statement is
executed.

In this document, the term ‘next executable statement’ is used to
refer to the next COBOL statement to which control is transferred
according to the rules above and the rules associated with each
language element in the Procedure Division.

There is no next executable statement following:

The last statement in a declarative section when the paragraph ~ >
in which it appears is not being executed under the control of
some other COBOL statement. In COBOL, the result would be an
implicit transfer of control to the ¢first nondeclarative
statement.

The last statement in a program when the paragraph in which it
appears is not being executed under the control of some other
COBOL. statement. The result would be as if an implicit STOP
RUN statement were executed.

PAGE 106

SEGMENTATION

COBOL. segmentation is a facility that provides a means by which
the user may communicate with the compiler to specify object
program overlay requirements. COBOL segmentation deals only with
segmentation of procedures.

Segments

When segmentation is used, the entire Procedure Division must be
in sections. In addition, each section must be classified as
belonging either to the fixed portion or to one of the independent
segments of the object program as determined by the assignment of
segment numbers, All source paragraphe which contain the same
segment-numbers can range from 00 through 127, it is possible to
subdivide any object program into a maximum of 128 segments.
Segmentation in no way affects the need for qualification of
procedure-names to insure uniqueness.

Fixed Portion

The +fixed portion 1is defined as that part of the object program
which is always in memory. This portion of the program is composed
of segments with segment-numbers O through 49

Independent Segments

An independent segment is defined as part of the object program
which can overlay, and can be overlaid by:. another independent
segment. An independent segment has a segment—-number S50 through
127.

An independent segment is in its initial state whenever control is
transferred (either implicitly or explicitly) to that segment for
the first time during the execution of a program.

On subsequent transfers of control to the segment, an independent
segment is also in its initial state when:

Control is transferred ¢to that segment as a result of the
implicit transfer of control between consecutive statements
from a segment with a different segment-number.

Control is ¢transferred explicitly to that segment from a
segment with a different segment-number.

PAGE 107

On subsequent transfer of control to the segment. an independent
segment is in its last-used state when control is transferred
implicitly to that segment from a segment with a different
segment-number.

Segmentation Classification

Sections which are to be segmented are classified using a system
of segment-numbers and the following criteria:

Logic Requirements——Sections which must be available for
reference at all times, or which are referred to very
frequently, ave normally classified as belonging to one of the
permanent segments; sections which are used less frequently
are normally classified as belonging to one of the independent
segments, depending on logic requirements.

Frequency of Use—--Generally, the more frequently a section is
referred to, the lower its segment—-number; the less frequently
it is referred to, the higher its segment-number.

Relationship to Other Sections -—- Sections which #frequently

communicate with one another should be given the same
segment-numbers.

Segmentation Control

The logical sequence of the program is the same as the physical
sequence except for specific transfers of control. Control may be
transferred within a source program to any paragraph in a section;
that is, it is not mandatory to transfer control to the beginning
of a section.

Restrictions on Program Flow

When gegmentation 1is used, the following restrictions are placed
on the ALTER and PERFORM statements.

PAGE 108

N

-~

The ALTER STATEMENT

A GO TO statement in a section whose segment-number is greater
than or equal to 50 must not be referred to by an ALTER statement
in a section with a different segment—number.

The PERFORM STATEMENT

A PERFORM statement that appears in a section that is not in an
independent segment can have within its range, in addition to any
declarative sections whose execution is caused within that range,
only one of the following:

Sections and/or paragraphs wholly contained in one or more
fixed segments, or

Sections and/or paragraphs wholly contained in a single
independent segment.

A PERFORM statement that appears in an independent segment can
have within its range, in addition to any declarative sections
whose execution is caused within that range, only one of the
following:

Sections and/or paragraphs wholly contained in one or more
fixed segments, or

Sections and/or paragraphs wholly contained in the same
independent segment as that PERFORM statement.

PAGE 109

THE USE STATEMENT

The USE statement specifies procedures for input-ouvtput error
handling that are in addition to the standard procedures provided
by the input—output control system. It is a compiler directing
statement required in each declarative section.

FORMAT

USE AFTER STANDARD {EXCEPTION}

——— G gt s v - o oo oo chns wme

{ERROR >
PROCEDURE ON {file-name-1 [, file-name—-21] >
————————— {INPUT ¥
COUTPUT)
a-o >
{;;;END >

A USE statement, when present, must immediately follow a section
header in the declaratives section and must be followed by a
period +followed by a space. The remainder of the section must
consist of zero., one or more procedural paragrahs that define the
procedures to be used.

The USE statement itself is never executed: it merely defines the
conditions calling for the execution of the USE procedure.

The same file-name can appear in only one USE statement.

The words ERROR and EXCEPTION are synonymous and may be used
interchangeably.

The designated procedures can be executed by the input-output
system after completing the standard input—-output error routine,
or upon recognition of the INVALID KEY or AT END conditions, when
the INVALID KEY phrase or AT END phrase, respectively, has not
been specified in the input—output statement.

After execution of a USE procedure, contreol is returned to the
invoking routine.

PAGE 110

Within a USE procedure, there must not be any reference to any
nondeclarative procedures. Conversely, in the nondeclarative
portion there must be no reference to procedure-names that appear
in the declarative portion, except that PERFORM statements may
refer to a USE statement or to the procedures associated with such
a USE statement.

Within a USE procedure:. there must not be the execution of any
statement that would cause the execution of a USE procedure that
had previously been invoked and had not yet returned control +to
the invoking routine.

USE Example:

PROCEDURE DIVISION.
DECLARATIVES.
I0O-ERROR SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON I-0.
I0-ERROR.
DISPLAY "INPUT-OUTPUT ERROR OCCURRED".
ACCEPT CONTINUE-FLAG POSITION ZERO.
IF CONTINUE-FLAG = "NO" STOP RUN.
END DECLARATIVES.

PAGE 111

ARITHMETIC STATEMENTS

The arithmetic statements ADD, COMPUTE, DIVIDE, MULTIPLY., and
SUBTRACT have several common features:

The data descriptions of the operands need not be the same;
any necessary conversion and decimal point alignment is
supplied throughout the calculation.

Arithmetic operations are calculated in either binary,
decimal, packed decimal, or mixed depending on the USAGE of
the operands and receiving item according to the following
Trules:

I+ the receiving data item of a divide operation is
DISPLAY or COMPUTATIONAL. the operation is always
calculated in decimal with any necessary conversions.

Intermediate and final results are calculated in binary i#f
all preceding intermediate results are binary and the next
operand has COMPUTATIONAL-~1 wusage (except as noted in
previous paragraph). Otherwise, the remaining intermediate
and final results are calculated in decimal with any
necessary conversions.

The maximum <size of each operand is eighteen (18) decimal
digits. The composite of operands, which is a hypothetical
data item resulting from the super—imposition of specified
operands in a statement aligned on their decimal points, must
not contain more than eighteen decimal digits.

Arithmetic Expressions

An arithmetic expression can be an identifier of a numeric
elementary item» a numeric literal. such identifiers and 1literals
separated by arithmetic operators, two arithmetic expressions
separated by an arithmetic operator. or an arithmetic expression
enclosed in parentheses. Any arithmetic expression may be preceded
by a wunary operator. The permissibhle combinations of variables,
numeric literals, arithmetic operator and parentheses are given in
Combination of Symbols in Arithmetic Expressions Table.

Those identifiers and 1literals appearing in an arithmetic

expression must represent either numeric elementary items or
numeric literals on which arithmetic may be performed.

PAGE 112

AT

Arithmetic Operators

There are four binary arithmetic operators and two unary
arithmetic operators that may be used in arithmetic expressions.
They are represented by specific characters that must be preceded
by a space and followed by a space

Binary Arithmetic

Operators Meaning
+ Addition
- Subtraction
¥* Multiplication
/ Division

Unary Arithmetic
Operators Meaning

oo —— s o oo -

+ The effect of multiplication
by numeric literal +1

- The effect of multiplication
by numeric literal -1,

Formation and Evaluation Rules

Parentheses may be used in arithmetic expressions to specify the
order in which elements are to be evaluated. Expressions within
parentheses are evaluated first: and within nested parentheses,
evaluation proceeds from the least inclusive set to the most
inclusive set. When parentheses are not used. or parenthesized
expressions are at the same level of inclusiveness, the following
hierarchical order of execution is implied:

1st ~ Unary plus and minus

2nd - Multiplication and division
3rd - Addition and subtraction

PAGE 113

Parentheses are wused either to eliminate ambiguities in logic —

where consecutive operations of the same hierarchical level appear
or to modify the normal hierarchical sequence of execution in
expressions where it is necessary to have some deviation from the
normal precedence. When the sequence of execution is not secified
by parentheses, the order of execution of consecutive operations
of the same hierarchical level is from left to right.

The ways in which operators, variables. and parentheses may be
combined in an arithmetic expression are summarized in the
following table:, where:

The letter ‘P’ indicates a permissible pair of symbols.

The character ‘-’ indicates an invalid pair.

‘Yariable’ indicates an identifier or literal.

———— oo anen - M o i s ot 2000 o ey G b S SR S o - -

i FIRST H SECOND SYMBOL H
i SYMBOL | e e e e e o e !
H { Variable | #/—-+ | Unary + or - | { |) 1|
{ooesssooosenes | semoemoase | ssesssess | sosoemsosaemmnes | moes | moms |
{ Variable H - H P H - HEE A
bkt R i e P e e e R
VAR B H P : - : P i P -
bttt e o e e e e e el bl
{ Unary +or- | P H - i - r P -
it | - - o —f e ——
H ¢ H P i - : P TP -
e kbl b P —————— § s s e e s e e |
D H - H P H - iV -1 P
An arithmetic expression may only begin with the symbol ‘(/, i

‘-’, or a variable and may only end with a ‘)’ or a variable.
There must be a one—~to—one correspondence between left and right
parentheses of an arithmetic expression such that each left
parenthesis is to the left of its corresponding right parenthesis.

Arithmetic expressions allow the user to combine arithmetic

operations without the restrictions on composite of operands
and/or receiving data items.

CONDITIONALS

The conditions are relation, class, condition—-name., and
switch—status. A condition has a truth value of ‘true’ or ‘false’.

PAGE 114

Relation Condition

A relation condition causes a comparison of two operands, each of
which may be the data item referenced by an identifier or a
literal. A relation condition has the truth value of ‘true’ if the
relation exists between the operands.

Comparison of two numeric operands is permitted regardless of the
formats specified in their respective USAGE clauses. However, for
all other comparisons the operands must have the same usage. If
either of the operands is a group item, the nonnumeric comparison
rules apply.

The general format of a relation condition is as follows:

{identifier—1) {IS [NOT] GREATER THANX}{identifier-2 ¥
{literal-t > {18 [;8;3 CE;;—;;AN }{literal-2 ¥
{index—name-1} {IS [;a;l E&GZL TO Y{index-name—2 >

{18 [;6;3 ;__‘ﬂ >

{18 Eaa;l < ¥

{18 [aa;l = ¥

The +first operand (identifier—1, literal-l or index-name-—1) is
called the subject of the conditioni the second operand
(identifier-2, literal-2 or index—-name-2) is called the object of
the condition. The relation condition must contain at least one
reference to a variable.

PAGE 1195

The relational operator specifies the type of comparison to be
made in a relation condition. A space must precede and follow each
reserved word comprising the relational operator. When used, ‘NOT’
and the next key word or relation character are one relational
operator that defines the comparison to be executed for truth
value; e.g.. ‘NOT EQUAL’Y is a truth test for an ‘unequal’
comparison; ‘NOT GREATER‘ igs a truth test for an ‘equal’ or ‘less’
comparison. The meaning of the relational operators is as follows:

Meaning Relational Operator
Greater than or not greater than IS ENDT] GREATER THAN
18 [NOTT >
Less than or not less than IS [NOT1 LESS THAN
I8 INOTI <
Equal to or not equal to IS [NOT1 EQUAL TO

IS [NOT] =

NOTE: The required relational characters ‘>’, ‘<’, and ‘=’ are
not underlined to avoid confusion with other symbols such
as ‘2’ (greater than or equal to).

Comparison of Numeric Operands

For operands whose class is numeric a comparison is made with
respect to the algebraic value of the operands. The length of the
literals or operands, in terms of number of digits represented, is
not significant. Zero is considered a unique value regardless of
the sign.

Comparison of these operands is permitted regardless of the manner
in which their usage is described. Unsigned numeric operands are
considered positive for purposes of comparison.

PAGE 116

I N

Comparison of Nonnumeric Dperands

For nonnumeric operands, or one numeric and one nonnumeric
operand, a comparison is made with respect to a specified
collating sequence of characters. I#f one of the operands is
specified as numeric, it must be an integer data item or an
integer literal and:

I# the nonnumeric operand is an elementary data item or a
nonnumeric literal, the numeric aperand is treated as though
it were moved to an elementary alphanumeric data item of the
same size as the numeric data item (in terms of standard data
format characters), and the contents of this alphanumeric data
item were then compared to the nonnumeric operand.

If the nonnumeric operand is a group item, the numeric operand
is treated as though it were moved to a group item of the same
size as the numeric data item (in terms of standard data
format characters), and the contents of this group item were
then compared to the nonnumeric operand.

A noninteger numeric operand cannot be compared to a nonnumeric
opetrand.

The size of an operand is the total number of standard data format
characters in the operand. Numeric and nonnumeric operands may be
compared only when their usage is the same. There are two cases to
consider: operands of equal size and operands of unequal size

Operands of equal size: If the operands are of equal size,
comparison effectively proceeds by comparing characters in
corresponding character positions starting from the high order end
and continuing until either a pair of wunequal characters is
encountered or the 1low order end of the operand is reached,
whichever comes first. The operands are determined to be equal if
all pairs of characters compare equally through the last pair,
when the low order end is reached.

The first encountered pair of unequal characters is compared to
determine their relative position in the collating sequence. The
operand that contains the character that is positioned higher in
the collating sequence is considered to be the greater operand.

Operands of vunequal size: If the operands are of unequal size,

comparison proceeds as though the shorter operand were extended on
the right by sufficient spaces to make the operands of equal size.

PAGE 117

Comparisons of Index—Names and/or Index Data Items N

If two index-names are compared the result is the same as if the
corresponding occurrence numbers were compared.

For an index-name and a data item (other than an index data item)
or literal, the comparison is made between the occurrence number
that corresponds to the value of the index-name and the data item
or literal.

When a comparison is made between an index data item and an
index—name or another index data item, the actual values are
compared without conversion.

The result of the comparison of an index data item with any data
item or literal not specified above is undefined.

Class Condition

The <class condition determines whether the operand is numeric,
that is, consists entirely of the characters ‘0‘, ‘17, 27, ‘3,

. ‘?’, with or without the operational sign:; or alphabetic,
that is, consists entirely of the characters ‘A’, ‘B, ‘Cy e
‘Z’, space. The general format for the class condition is as
follows:

—_

identifier IS [NOT]1 {NUMERIC >

o - s v oo st qatoe oo

ey o o e e gl o sepon

The usage of the operand being tested must be described as
display. When used, ‘NOT’ and the next key word specify one class
condition that defines the class test to be executed #for truth
value, e.g.., ‘NOT NUMERIC’ is a truth test for determining that an
operand is nonnumeric.

PAGE 118

The NUMERIC test <cannot be vused with an item whose data
description describes the item as alphabetic or as a group item
ctomposed of elementary items whose data description indicates the
presence of operational sign(s). If the data description of the
item being tested does not indicate the presence of an operational
sigm, the item being tested is determined to be numeric only if
the contents are numeric and an operational sign is not present.
If the data description of the item does indicate the presence of
an operational sign, the item being tested is determined to be
numeric only if the contents are numeric and a valid operational
sign is present. Valid operational signs for data items are the
standard data format characters, ‘+’ and ‘-’

The ALPHABETIC test cannot be wused with an item whose data
description describes the item as numeric. The item being tested
is determined to be alphabetic only if the contents consist of any
combination of the alphabetic characters ‘A’ through ‘Z’ and the
space.

Condition—name (Conditional Variable)

In a condition—-name condition, a conditional variable is tested to
determine whether or not its value is equal to one of the valves
associated with a condition-name. The general-format for the
condition—name condition is as follows:

condition—name

If the condition—-name is associated with a range of wvalues, then
the conditional variable is tested to determine whether or not its
value falls in this range, including the end valves.

The Tules for comparing a conditional variable with a
condition-name value are the same as those specified for relation
conditions.

The result of the test is true if one of the values corresponding

to the condition-name equals the value of its associated
conditional variable.

PAGE 119

Switch—-Status Condition

A switch-status condition determines the ‘on’ or ‘off’ status of a
software switch. The switch—-name and the ‘on’ or ‘off’ value
associated with the condition must be named in the SPECIAL-NAMES
paragraph of the Environment Division. The general format #for the
switch—status condition is as follows:

condition—-name

The result of the test is true if the switch is set to the
specified position corresponding to the condition-name.

Complex Conditions

A complex condition is +formed by combining simple conditions,
combined conditions and/or complex conditions with logical
connectors (logical operators ‘AND‘ and ‘OR‘) or negating these
conditions with logical negation (the logical operator ‘NOT’). The
truth value of a complex condition, whether parenthesized or not.
is that truth value which results from the interaction of all the
stated logical operators on the individual truth values of simple
conditions, or the intermediate truth values of conditions
logically connected or logically negated. The 1logical operators
and their meanings are:

Logical Operator Meaning

. S e Yat0a D D St apmt WO St Sl i St L —— g, oot

AND Logical conjunction; the truth value
is ‘true’ if both of the conjoined
conditions are true; ‘false’ if one
or both of the conjoined conditions
is false.

ORrR LLogical inclusive OR; the truth value
is ‘true’ if one or both of the
included conditions is true; ‘false’
if both included conditions are false

NOT Logical negation or reversal of truth
value; the truth value is ‘true’
if the condition is false;
‘false’ if the condition is true.

The logical operators must be preceded by a space and followed by
a space.

PAGE 120

Negated Simple Conditions

A simple condition is negated
operator ‘NOT‘. The negated simple
truth value for a simple condition.
negated simple condition is

of the simple condition

simple condition is ‘false’

simple condition is ‘true’. The
negated simple condition does not change the truth value.

‘true’
is ‘false’;
it and

through the use of the logical

condition effects the opposite
Thus the truth value of a
if and only if the truth value
the truth value of a negated
only if the truth value of the

inclusion in parentheses of a

The general format for a negated simple condition is:

NOT simple—-condition

Combined and Negated Combined Conditions

A combined condition results from connecting conditions with one
‘AND‘ or

of the logical operators
combined condition is:

condition {{AND)> condition} ...

{0R 3

Where ‘condition’ may be
A simple condition,
A negated simple con

A combined condition

or
dition.

: OT

or

A negated combined condition;
followed by a combined condition enclosed within parentheses,

or

Combinations of the

above.

PAGE 121

‘OR’. The general format of a

i.e., the ‘NOT’ logical operator

Although parentheses need never be used when either ‘AND’ or ‘OR’
(but not both) is used exclusively in a combined condition,
parentheses may be used to affect the final +¢ruth value when a
mixture of ‘AND’, ‘OR’ and ‘NOT‘ is used.

Condition Evaluation Rules

Condition Evalvation Rwules indicate the ways in which conditions
and logical operators may be combined and parenthesized. There
must be a one—~to-one correspondence between left and right
parentheses such that each left parenthesis is to the left of its
corresponding right parenthesis

Parentheses may be used to specify the order in which individual
conditions of complex conditions are to be evaluated when it is
necessary to depart from the implied evaluvation precedence.
Conditions within parentheses are evaluated first, and, within
nested parentheses, evaluation proceeds from the least inclusive
condition to the most inclusive condition. When parentheses are
not wused, or parenthesized conditions are at the same level of
inclusiveness, the +following hierarchical order of logical
evluation is implied until the final truth value is determined:

Truth values for simple conditions are established.
Truth values for negated simple conditions are established.
Truth values for combined conditions are established:

‘AND’ logical operators, followed by
‘OR’ logical operators.

Truth values for negated combined conditions are established.
When the sequence of evaluation is not completely specified by

parentheses, the order of evaluvation of consecutive operations
of the same hierarchical level is from left to right.

PAGE 122

SEQUENTIAL ORGANIZATION INPUT-OUTPUT

The sequential organization input-output statements in the
Procedure Division are the CLOSE, OPEN, READ, REWRITE, UNLOCK,
USE, and WRITE statements.

Function

Sequential organization input-output provides a capability to
access records of a file in established sequence. The sequence is
established as a result of writing the records to the file.

Organization

Sequential files are organized such that each record in the file
except the first has a unique predecessor record, and each record
except the last has a unique successor Tecord. These
predecessor—successor relationships are established by the order
of WRITE statements when the file is created. Once established,
the predecessor—successor relationships do not change except in
the case where records are added to the end of the file

Access Mode

In the sequential access mode, the sequence in which records are
accessed is the order in which the records were originally
written,

Current Record Pointer

The current record pointer is a conceptual entity used in this
document to facilitate specification of the next record to be
accessed within a8 given file. The concept of the current record
pointer has no meaning for a file opened in the output mode. The
setting of the current record pointer is affected only by the OPEN
and READ statements.

PAGE 123

I-0 Status

I# the FILE STATUS clause is specified in a file control entry., a
value is placed into the specified two—character data item during
the execution of an OPEN, CLOSE, READ, WRITE, or REWRITE statement
and before any applicable USE procedure is executed, to indicate
to the COBOL program the status of that input-output operation.

Status Key 1

The leftmost character position of the FILE STATUS data item is
known as status key 1 and is set to indicate one of the following
conditions upon completion of the input-output operation:

‘0’ ~ Buccessful Completion. The input-output statement was
successfully executed.

‘1’ - At End. The sequential READ statement was unsuccessfully
executed as a result of an attempt to read a record when no
next logical record exists in the file.

‘3’ - Permanent Ervor. The input-output statement was
vnsuccessfully executed as the result of a boundary violation
for a sequential file or as the rtesult of an input—-output
error, such as data check parity error, or transmission error.

‘9’ - General Error. The input-output statement was
unsuccessfully executed as a result of a condition that is
specified by the value of status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is
known as status key 2 and is used to further describe the results
of the input—-output operation. This character will contain a value
as follows:

I+ no further information 1is available concerning the
input-output operation, then status key 2 contains a value of
‘0.

When status key 1 contains a wvalue of ‘3’ indicating a
permanent error condition, status key 2 may contain a valuve of
4’ indicating a boundary violation. This condition indicates
that an attempt has been made to write beyond the externally
defined boundaries of a sequential file.

PAGE 124

When status key 1 contains a value of ‘9’ indicating an
operating system error condition, the value of status key 2
may contain a:

‘0’ indicating an invalid operation. This condition
indicates that an attempt has been made to execute a READ,
WRITE:, or REWRITE statement that conflicts with the current
open mode or a REWRITE statement not preceded by a
successful READ statement.

‘1’ indicating +file not opened. This condition indicates
that an attempt has been made to execute a DELETE, START,
UNLOCK, READ, WRITE, REWRITE or CLOSE statement on a file
which is not currently open.

‘2’ indicating file not closed. This condition indicates
that an attempt has been made to execute an OPEN statement
on a file which is currently open.

‘3’ indicating file not available. This condition indicates
that an attempt has been made to execute an OPEN statement
for a file closed WITH LOCK.

‘4’ indicating an invalid open. This condition indicates
that an attempt has been made to execute an OPEN statement
for a file with no external correspondence or a file having
inconsistent parameters.

'S’ indicating invalid device or no next reel. This
condition indicates that an attempt has been made to open a
file having parameters (e.g., open mode or organization)
which conflict with the device assignment (RANDOM. INPUT,
PRINT, ...) or that an attempt has been made to execute a
CLOSE REEL statement for the last reel/unit of a multi-reel
file. In the case of a CLOSE REEL, the file has been
closed.

6’ indicating an undefined current record pointer status.
This condition indicates that an attempt has been made to
execute a READ statement after occurrence of an
unsuccessful READ statement without an intervening
successful CLOSE and OPEN.

7! indicating an invalid record length. This condition
indicates an attempt has been made to open a #ile that was
defined with a maximum record 1length different from the
externally defined maximum record length, or to execute a
WRITE statement that specifies a record with a length
smaller than the minimum or larger than the maximum record
size, or a REWRITE statement when the new record length is
different from that of the record to be rewritten.

PAGE 125

RELATIVE ORGANIZATION INPUT-OUTPUT

The Relative input-output statements in the Procedure Division are
the CLOSE, DELETE, OPEN, READ, REWRITE. START, UNLOCK and WRITE
statements.

Function

Relative input—output provides a capability to access records of a
mass storage file in either a random or sequential manner. Each
record in a relative file is uniquely identified by an integer
value greater than zero which specifies the record’s logical
position in the file.

Organization

Relative +file organization is permitted only on mass storage
devices (RANDOM device).

A relative file «consists of records which are identified by
relative record numbers. The file may be thought of as composed of
a serial string of areas, each capable of holding a logical
record. Each of these areas is denominated by a relative record
number, an integer value greater than zero. Records are stored and
retrieved based on this number. For example, the tenth record is
the one addressed by relative record number 10 and is the tenth
record area, whether or not records have been written in the first
through the ninth record areas.

Access Modes

In the sequential access mode, the sequence in which records are
accessed is the ascending order of the relative record numbers of
all records which currently exist within the file.

PAGE 126

In the random access mode, the sequence in which records are
accessed is controlled by the programmer., The desired record is
accessed by placing its relative record number in a relative key
data item.

In the dynamic access mode, the programmer may change at will from

sequential access to random access using appropriate forms of
input-output statements.

Current Record Pointer

The current record pointer is a conceptual entity used in this
document to facilitate specification of the next record to be
accessed within a given file. The concept of the current record
pointer has no meaning for a file opened in the output mode. The
setting of the current record pointer is affected only by the
OPEN: READ, and START statements.

I-0 Status

If the FILE STATUS clause is specified in a file control entry, a
value is placed into the specified two-character data item during
the execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, or
START statement and before any applicable USE procedure is
executed, to indicate to the COBOL program the status of that
input-output operation:

Status Key 1

The leftmost character position of the FILE STATUS data item is
known as status key 1 and is set to indicate one of the following
conditions upon completion of the input—output operation:

‘0’ - Successful Completion. The input-ouvtput was successfully
executed.

‘1’ -~ At End. The statement was unsuccessfully executed as a

result of an attempt to read a record when no next logical
record exists in the file.

PAGE 127

‘24 - Invalid Key. The input-output statement was
unsuccessfully executed as a result of one of the following:

Duplicate Key
No Record Found
Boundary Violation

‘3’ -~ Permanent Errvror. The input-ovutput statement was
unsuccessfully executed as the result of an input-output
error, such as data check, parity error, or <¢transmission
error.

‘9’ —~ General Error. The input-output statement was
unsuccessfully executed as a result of a condition that is
specified by the value of status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is
known as status key 2 and is used to further describe the results
of the input—output operation. This character will contain a value
as follows:

I¢ no further information is available concerning the
input—-output operation, then status key 2 contains a value of
‘0.

When status key 1 contains a value of ‘2‘ indicating an
INVALID KEY condition, status key 2 is:

‘27 indicatihg a duplicate key value. An attempt has been
made to write a record that would create a duplicate key.

‘37 indicating no record found. An attempt has been made
to access a record, identified by a key, and that record
does not exist in the file.

‘4’ indicating a boundary violation. An attempt has been
made to write beyond the externally—defined boundaries of
a file.

When status key 1 contains a value of ’?’ indicating an
operating system error condition, the value of status key 2
is:

‘0’ indicating invalid operation. An attempt has been made
to execute a DELETE, READ: REWRITE. START,. or WRITE
statement which conflicts with the current open mode of
the file or a sequential access DELETE or REWRITE
statement not preceded by a successful READ statement.

PAGE 128

N

‘1’ indicating file not opened. This condition indicates
that an attempt has been made to execute a DELETE, START,
UNLOCK, READ, WRITE, REWRITE, or CLOSE statement on a file
which is not currently open.

‘2’ indicating file not closed. An attempt has been made
to execute an OPEN statement on a file that is currently
open.

‘3’ indicating file not available. An attempt has been
made to execute an OPEN statement for a file closed WITH
L.OCK.

‘4’ indicating invalid OPEN. An attempt has been made to
execute an OPEN statement for a file with no external
correspondence or a file having inconsistent parameters.

‘S’ indicating invalid device. This condition indicates
that an attempt has been made to open a file having

parameters (e.g.. open mode orT organization) which
conflict with the device assignment (RANDOM, INPUT, PRINT,
.

‘6’ indicating an undefined current record pointer status.
This condition indicates that an attempt has been made to
execute a sequential READ statement after the occurrence
of an unsuccessful READ or 8START statement without an
intervening successful CLOSE and OPEN.

‘7' indicating an invalid record length. This condition
indicates that an attempt has been made to OPEN.a file
that was defined with a maximum record length different
from the externally defined maximum record length, or to
execute a WRITE statement that specifies a record with a
length smaller than the minimum or larger than the maximum
record size, or a REWRITE statement when the new record
length is different #from that of the record to be
rewritten,

The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the execution
of a START, READ, WRITE, REWRITE, or DELETE statement.

When the INVALID KEY condition is recognized, the System takes
these actions in the following order:

PAGE 129

A value is placed into the FILE STATUS data item, if specified
for this file, to indicate an INVALID KEY condition.

I+ the INVALID WKEY phrase is specified in the statement
causing the condition., control is transferred to the INVALID
KEY imperative statement. Any USE procedure specified for this
file is not executed.

If the INVALID HKEY phrase 1is not specified, but a USE
procedure is specified, either explicitly or implicitly, for
this file. that procedure is executed.

When the INVALID KEY condition occurs, execution of the

input-output statement which recognized <the condition is
unsuccessful and the file is not atffected.

The AT END Condition

The AT END condition can occur as a result of the execution of a
READ statement. When the AT END condition occurs, execution of the
READ statement is unsuccessful.

PAGE 130

INDEXED ORGANIZATION INPUT-QUTPUT

Indexed input-output statements in the Procedure Division are the
CLOSE: DELETE, OPEN, READ, REWRITE, START, UNLOCK and WRITE
statements.

Function

Indexed input—output provides a capability to access records of a
mass storage file in either a random or sequential manner. Each
record in a nonsequential organization file is uniquely identified
by a key.

Organization

A file whose organization is indexed is a8 mass storage file in
which data records may be accessed by the value of a key. A record
description may include one or more key data items, each of which
is associated with an index. Each index provides a logical path to
the data records according to the contents of a data item within
each record which is the recorded key for that index.

The data item named in the RECORD KEY clause of the file control
entry for a file is the prime Ttmecord key for that file. For
purposes of inserting, wupdating and deleting records in a file,
each record is identified solely by the value of its prime record
key. This value must, therefore, be unique and must not be changed
when vpdating the record.

Access Modes

In the sequential access mode, the sequence in which records are
acceesed is the ascending order of the keys of all records which
curtrently exist within the file.

In ¢the random access mode, the sequence in which records are
accessed is controlled by the programmer. For indexed files, the
desired record is accessed by placing the value of its record key
in a record key data item.

PAGE 131

In the dynamic access mode, the programmer may change at will from
sequential access to random access wusing appropriate forms of :
input-output statements.

Current Record Pointer

The current record pointer is a conceptual entity used in this
document to facilitate specification of the next record to be
accessed within & given file. The concept of the current record
pointer has no meaning for a file opened in the output mode. The
setting of the current record pointer is affected only by the
OPEN, READ, and START statements.

1-0 Status

If the FILE STATUS clause is specified in a file control entry, a
value 1is placed into the specified two—-character data item during

the execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE., or
START statement and before any applicable USE procedure is
executed, to indicate to the COBOL program the status of that
input-output operation:

Status Key 1

The leftmost character position of the FILE STATUS data item is
known as status key 1 and is set to indicate one of the following
conditions upon completion of the input—output operation:

‘0’ ~ Successful Completion. The input—output was successfully
executed,.

‘1 - At End. The Format 1 READ statement was unsuccessfully
executed as a Tresult of an attempt to read a record when no
next logical record exists in the file.

‘2’ - Invalid Key. The input-output statement was
unsuccessfully executed as a result of one of the following:

Sequence Error
Duplicate Key

No Record Found
Boundary Violation

PAGE 132

‘3’ - Permanent Error. The input—-output statement was
unsuccessfully executed as the result of an input-output

error, such as data check, parity error, or transmission
error.
‘9’ - General Error. The input~output statement was

unsuccessfully executed as a result of a condition that |is
specified by the value of status key 2.

Status Key 2

The rvightmost character position of the FILE STATUS data item is
known as status key 2 and is used to further describe the results
of the input-output operation. This character will contain a value
as follows:

I¢ no further information is available concerning the
input—output eperation, then status key 2 contains a value of
‘0.

When status key 1 contains a8 value of O, indicating a
successful completion, status key 2 may contain a value of 2,
indicating a duplicate key. This condition indicates:

For a READ statement, the key value for the current key of
reference 1is equal to the value of that same key in the
next record within the current key of reference.

For a WRITE or REWRITE statement, the record just written
created a duplicate key value for at least one alternate
record key for which duplicates are allowed.

When status key 1 containsgs a value of ‘2’ indicating an
INVALID KEY condition, status key 2 is:

‘1’ indicating a sequence error for a sequentially
acrcessed indexed file. The ascending sequence requirement
of successive rTecord key values has been violated or the
record key value has been changed by the COBOL program
between the successful execution of a READ statement and
the execution of the next REWRITE statement for that file.

PAGE 133

‘2’ indicating a duplicate key value. An attempt has been
made to write a record that would create a duplicate key.

‘3’ indicating no record found. An attempt has been made
to access a record, identified by a key, and that record
does not exist in the file.

‘4’ indicating a boundary violation. An attempt has been
made to write beyond the externally~defined boundaries of
a file.

When status key 1 contains a value of ‘9?‘ indicating an
operating system error condition, the value of status key 2
is:

‘0’ indicating invalid operation. An attempt has been made
to execute a DELETE, READ. REWRITE, START, or WRITE
statement which conflicts with the current open mode of
the file or a sequential access DELETE or REWRITE
statement not preceded by a successful READ statement.

‘1’ indicating file not opened. This condition indicates
an attempt has been made to execute a delete, start,
unlock: read, write, rewrite, or close statement on a file
that is not currently open.

‘2’ indicating file not closed. An attempt has been made
to execute an OPEN statement on a file that is currently
open.

'3’ indicating file not available. An attempt has been
made to execute an OPEN statement for a file closed with
L.OCK.

‘4’ jindicating invalid open. An attempt has been made to
execute an OPEN statement for a file with no external
correspondence or a file having inconsistent parameters.

‘D’ indicating invalid device. This condition indicates
that an attempt has been made to open a file having
parameters (e.g., open mode or organization which conflict
with the device assignment (RANDOM, INPUT. PRINT, ...)).

‘6’ indicating an undefined current record pointer status.
This condition indicates that an attempt has been made to
execute a sequential READ statement after the occurrence
of an unsuccessful READ or START statement without an
intervening successful CLOSE and OPEN.

PAGE 134

‘7’ indicating an invalid record length. This condition
indicates that an attempt has been made to open a +file
that was defined with a maximum record length different
from the externally defined maximum record length, or to
execute a WRITE statement that specifies a record with a
length smaller than the minimum or larger than the maximum
record size, or a REWRITE statement when the new record
length is different #from that of the record to be

rewritten.

‘8¢ indicating an invalid indexed +file. This <condition
indicates that the indexed +file contains inconsistent
data. This is a catastrophic error from which there is no
recovery at the present time.

PAGE 135

The INVALID KEY Condition

The INVALID WKEY condition can occur as a result of the execution
of a START, READ. WRITE:. REWRITE, or DELETE statement.

When the INVALID KEY condition is recognized, the System takes
these actions in the following order:

A value is placed into the FILE STATUS data item, if specified
for this file, to indicate an INVALID KEY condition.

I# the INVALID HKEY phrase is specified in the statement
tavsing the condition, control is transferred to the INVALID
KEY imperative statement. Any USE procedure specified for this
file is not executed.

I# the INVALID KEY phrase is not specified, but a USE
procedure is specified, either explicitly or dimplicitly, for
this file, that procedure is executed.

When the INVALID HKEY condition occurs, execution of the

input-output statement which recognized the condition is
unsuccessful and the file is not affected.

The AT END Condition

The AT END condition can occur as a result of the execution of a
READ statement. When the AT END condition occurs, execution of the
READ statement is unsuccessful.

PAGE 136

PROCEDURAL STATEMENTS

The ACCEPT ... FROM Statement

The ACCEPT statement causes the information requested +to be
transferred ¢to the data item specified by identifier-1 according
to the rules of the MOVE statement. DATE, DAY, and TIME are
conceptual data items and, therefore, are not described in the
COBOL. program.

FORMAT

ACCEPT identifier—1 FROM {DATEY}
{DAY >

{TIMEY

DATE is composed of the data elements year of century, month of
year, and day of month. The sequence of the data element codes is
from high order to low order (left to right), year of century,
month of year, and day of month. Therefore, July 1, 1979 would be
expressed as 790701. DATE. when accessed by a COBOL program
behaves as if it had been described in the COBOL program as an
unsigned elementary numeric integer data item six digits in
length.

DAY is «composed of the data elements year of century and day of
year. The sequence of the data element codes is from high order to
low order (left to right) year of century, day of year. Therefore,
July 1, 1979 would be expressed as 79181. DAY, when accessed by a
COBOL program as an unsigned elementary numeric integer data item
five digits in length;

PAGE 137

TIME is composed of the data elements hours, minutes, seconds and
hundredths of a second. TIME is based on elapsed time after
midnight on a 24-hour clock basis--thus, 2:41 p.m would be
expressed 14410000. TIME, when accessed by a COBOL program behaves
as if it had been described in a COBOL program as an unsigned
elementary numeric integer data item eight digits in length. The
minimum value of TIME is 00000000; the maximum value of TIME is
23595999.

ACCEPT ... FROM Examples

ACCEPT YEAR-DAY FROM DAY.
ACCEPT CLOCK FROM TIME.

PAGE 138

The ACCEPT Statement (Terminal I-0)

The ACCEPT statement causes low volume data to be accepted from
the CRT terminal and transferred to the specified data item.
ACCEPT statement phrases allow the specification of position, form
and format of the accepted data.

FORMAT

ACCEPT {identifier—1 [,UNIT {identifier-2}]
~~~~~~ ~==-= {literal-l >

E,LINE {identifier—3%1 [,POSITION {identifier—4}]
———— {literal-2 Yy | mee——e—— {literal-3 ¥

[,8IZE {identifier-5)1 [,PROMPT [literal-~51]
————— {literal-4 > e

C.OFF1 [,{HIGHX>] [,BLINK]1 [,REVERSEl}...

- U P o e e oo vt antag eme

{LOW >

o -

[,ON EXCEPTION identifier—& imperative-statement]

- oy enite G Lt oo i e s S

The ACCEPT statement causes the transfer of data from the CRT
device. This data replaces the contents of the data item named by
identifier—-1. The receiving data item must have usage DISPLAY i#
ECHDO is specified; otherwise, it may have any vsage except INDEX.

When an ACCEPT statement contains more than one operand, the
values are transferred in the sequence in which the operands are
encountered. ACCEPT phrases apply to the previously specified
identifier—1 only. A subsequent identifier—1 in the same ACCEPT
statement will be treated as if no previous phrases have been
specified.

An ACCEPT statement may contain no more than one ON EXCEPTION
phrase, and if present it must be associated with the last (or
only) identifier—1.

Note: Features which require support of the host operating
system and/or terminal hardware may not be supported on
all systems. Any features which are not supported will
compile correctly, but will be ignored at runtime. See
the User’s Guide for specific details.

PAGE 13%




The UNIT Phrase

The UNIT phrase must be the #first phrase if wused. The other
phrases may be written in any order.

The wvalue of identifier-2 or literal-1 in the UNIT phrase
specifies the station identifier of the CRT from which the data is
to be accepted. If the UNIT phrase is omitted, <the CRT which
executed the program will be accessed. .

The LINE Phrase

The wvalue of identifier—3 or literal-2 in the LINE phrase
specifies the line number from which the data is to be accepted
from the screen of the CRT terminal, with 1 being the top line. I#
the value is greater than the number of lines on the CRT screen,
it is ad justed to the maximum line number.

If the value is zero or the LINE phrase is not present in an
ACCEPT statement. then data is to be accepted from the next line
below the current position of the cursor on the CRT screen wunless
the value specified in the POSITION phrase is also zero, in which
case the data is to be accepted from the 1line at the current
position of the cursor on the CRT screen.

The POSITION Phrase

The wvalue of identifier-4 or literal-3 in the POSITION phrase
specifies the number of the character positions to which the
cursor is to be positioned within the specified line prior to the
accepting of data from the CRT terminal, with 1 being the leftmost
character position within a line. If the value is greater than the
maximum number of characters within a line on the CRT screen, it
is adjusted to the maximum character number.

If the POSITION phrase is not specified, a value of 1 is assumed
for the first accepted operand and O for each additional operand
accepted in the same statement. If a value of O is specified, the
data is to be accepted starting at the next field on the CRT
screen (starting character position plus size of last ACCEPT or
DISPLAY).

PAGE 140




The SIZE Phrase

The value of identifier-5% or literal—-4 in the GSIZE phrase
specifies the maximum number of characters to be accepted from the
CRT terminal, overriding ¢the Data Division definition of the
field. If the SIZE phrase is not present or a wvalue of 0O is
specified, then the size of identifier—-1, (identifier-5 ...) is
used. A size greater than BO is treated as equal to 80.

The size of the accepted field is determined by the SIZE phrase.
The number of characters transferred from the CRT is less than or
equal to the size of the accepted field. Input is terminated by
depression of the return key (which is naot considered part of the
input). The number of characters actually input is the size of the
spurce in the following:

I# the receiving item is not numeric. the accepted input is
stored according to the rules of the MOVE statement for an
alphanumeric source and destination. If the receiving item is
described JUSTIFIED RIGHT., the clause will apply to the MOVE
Tules.

I# the receiving item is numeric, the accepted input is stored
according to the rules of the MOVE statement for a numeric
source and destination. I¢ the CONVERT phrase is not
specified, the source has the same scale as the receiving
item. I# the receiving item has a trailing sign and the
CONVERT phrase is not specified, the input must contain digits
followed by a sign character. I+ the CONVERT phrase is
specified, then the input is converted according to the rules
of the CONVERT phrase. The CONVERT phrase is recommended when
accepting numeric items.

The PROMPT Phrase

The presence of the key word PROMPT in an ACCEPT statement causes
the data to be accepted with prompting. The action of prompting is
to display fill characters on the CRT screen in the positions from
which data is to be accepted. Literal-5 must be @ single character
nonnumeric literal which specifies the fill character to be used
in prompting. I# literal—-5 is omitted in the PROMPT phrase, then
an underscore will be used as the £ill character.

When the PROMPT phrase is not specified, then the data is to be

accepted without prompting; the original contents of the field on
the CRT will be undisturbed before accepting input.

PAGE 141




The ECHO Phrase

The presence of the key word ECHO within an ACCEPT statement
causes the contents of identifier-1 to be displayed on the screen
of the CRT terminal. Conversion (see CONVERT Phrase), decimal
alignment, and justification are performed prior to display. If
the specified size is greater <than the size of the TrTeceiving
data—item, the data-item is displayed Ttight Justified in the
accept field with leading blanks. If the specified size is less
than the size of the receiving data-item, the display is truncated
on the right. When the ECHO phrase is not specified, the original
input data remains in the accept field.

The CONVERT Phrase

If the receiving data-item is numeric, the presence of the key
word CONVERT within an ACCEPT statement causes the conversion of
an accepted field to & trailing-signed decimal field. The
trailing—sign decimal #field is then stored in identifier—1. The
conversion is accomplished by a left—to~right scan and the rules:

Set the sign according to the rightmost sign given in the
input or positive if no sign is present.

Set the scale according to the rtightmost period given in the
input or to zero if no period is present. If the DECIMAL POINT
18 COMMA clause was specified in the source program, a comma
replaces the period in determining the scale.

Delete all nonnumeric characters from the accepted field.
When the CONVERT phrase is not specified, or the receiving

data—item is not numeric. then the data is to be stored without
the above conversion.

The TAB Phrase

The presence of the key word TAB in an ACCEPT statement causes a
wait for a tab, return or backspace key in reaching the end of the
input field; the return will then terminate input, the backspace
character will position the cursor back one character, the tab
will reposition the cursor to the beginning of the field and all
other input will be ignored. If the key word TAB is omitted, input
will avutomatically be terminated if the end of the input field is
encountered.

PAGE 142




The ERASE Phrase

The presence of the key word ERASE within an ACCEPT statement
causes the screen of the CRT %o be erased prior to cursor
positioning. When the ERASE phrase is not specified. then the
screen is not erased prior to cursor positioning.

The NO BEEP Phrase

The presence of the key words NO BEEP in an ACCEPT statement
causes supression of the beep signal upon cursor positioning. 1+
the key words NO BEEP are omitted, a beep signal will occur upon
cursor positioning prior to data input.

The OFF Phrase

The presence of the key word OFF within an ACCEPT statement causes
data to be input from the terminal keyboard but not displayed to
the screen. Blank characters are displayed to the screen in lieu
of data characters.

The HIGH/LOW Phrase

The presence of the key word HIGH or LOW causes the PROMPT
character and the accepted data (if CONVERT and/or ECHO was
specified) to be displayed at the specified intensity.

When HIGH or LOW is not specified, the default display is HIGH.

The BLINK Phrase

The presence of the key word BLINK causes the PROMPT character,
and any displayed data, to be BLINKed. When BLINK 1is not
specified, no BLINK is provided.

The REVERSE Phrase

The presence of the key word REVERSE causes the PROMPT character,
and any displayed data:, to be displayed in a reverse image mode
When REVERSE is not specified, normal display is provided.

PAGE 143




The ON EXCEPTION Phrase

The presence of ON EXCEPTION causes the imperative—statement to be
executed if an invalid character is entered. The invalid character
(in ASCII format) will be placed in identifier-6 prior to
execution of the imperative-—-statement. The invalid character may
be determined by declaring identifier-6 as USAGE COMP-1 and
testing for its ASCII valvue.

When ON EXCEPTION and CONVERT are both specified and a conversion
erTor 0ccurs, an error code of "98" is returned in identifier—6.

ACCEPT Examples

ACCEPT ANSWER-1, ANSWER-2.

ACCEPT START-VALUE LINE 1, POSITION K,
PROMPT, ECHO. CONVERT.

ACCEPT NEXT-N POSITION O,
PROMPT, ECHO.

ACCEPT VYEAR, LINE YR-LN, POSITION YR-POS;
MONTH, LINE MN-LN., POSITION MN-POS.

PAGE 144

)




The ADD Statement

The ADD statement causes two or more numeric operands to be summed
and the result to be stored.

FORMAT 1
ADD {identifier-1) [,identifier-2]

{literal-1 > L, literal-2 ]

—————— o o v s

FORMAT 2
ADD {identifier—-1), {identifier-2) [,identifier~31]

{literal-1 Y {literal-2 } [,1literal—-3 b |

GIVING identifier-m [ROUNDED]

o gy o s s e oo oram e o

FORMAT 3
ADD {CORRESPONDING} identifier-1 7O identifier-2 [ROUNDED]

o — e e o - —— -

{CORR >

[; ON SIZE ERROR imperative-statement]

In Format 1, the values of the operands preceding the word TO are
added together, then the sum is added to the current value of
identifier-m storing the result immediately into identifier-m.

In Format 2, the values of the operands preceding the word GIVING

are added together, then the sum is stored as the new value of
identifier—-m.

PAGE 145




In Formats 1 and 2, each identifier must refer to an elementary
numeric item: except that in Format 2 identifier—-m following the
word GIVING must refer to either an elementary numeric item or an
elementary numeric edited item.

In Format 3, data items in identifier—1 are added to and stored in
the corresponding data items in identifier-2.

In Format 3, each identifier must refer to a group item.

Each literal must be a numeric literal.

The ROUNDED Phrase

The ADD statement may optionally include the ROUNDED phrase.

If, after decimal point alignment, the number of places in the
fraction of the result of the arithmetic operation is greater than
the number of places provided for the fraction of the
resultant—identifier, truncation is relative to the size provided
for the resultant—identifier. When rounding is requested. the
absolute wvalue of the resultant-identifier is increased by one
(1) whenever the most significant digit of the excess is greater
than or equal to five (3).

When the low-order integer paositions in a resultant identifier are
represented by the character ‘P’ in the picture for that
resultant-identifier, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

The SI1ZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute valve
of the result exceeds the largest value that can be contained in
the associated resultant—-identifier, a size error condition
exists. If the ROUNDED phrase is specified, rounding takes place
before checking for size error.

If the CORRESPONDING phrase is gpecified, and any of the
individual additions produces a size error condition, the
imperative-statement is not executed until all of the individual
additions are completed.

If the resultant—~identifier has COMPUTATIONAL-3 uvsage, size error
is correctly detected only for data items declared with an odd
length picture clause. Therefore all COMP-3 data items should be
declared with an odd number of character positions.

PAGE 146




I# the SIZE ERROR phrase is not specified and a size error
condition exists, the wvalue of the resultant—-identifier is
undefined.

If the SIZE ERROR phrase is specified and a size error condition

exists, the value of the resultant—identifier is not altered and
the imperative statement of the SIZE ERROR phrase is executed.

The CORRESPONDING Phrase

I#f the CORRESPONDING phrase is wused, selected items within
identifier-1 are ADDed to, and the result stored in, the
corresponding items in identifier-2.

Data items referenced by the CORRESPONDING phrase must adhere to
the following rules:

A data item in identifier—-l and a data item in identifier-2
must not be designated by the key word FILLER and must not
have the same data-name and the same qualifiers up to. but not
including, identifiers-1 and identifier-2.

Both of the data items must be elementary numeric data items.

The description of identifier—-1 and identifier-2 must not
contain level-numbher &&, 77, or 88 or the USAGE IS5 INDEX
clause,.

A data item that is subordinate to identifier—1 or
identifier~2 and contains a REDEFINES, RENAMES, OCCURS or
USAGE IS INDEX clause is ignored, as well as those data items
subordinate to the data item that contains the REDEFINES,
OCCURS.: or USAGE IS INDEX clause. However, identifier—1 and
identifier-2 may have REDEFINES or OCCURS <clauses or be
subordinate to data items with REDEFINES or OCCURS clauses.

CORR is an abbreviation for CORRESPONDING.

PAGE 147




ADD Examples

ADD SALARY TO SALARY.
(doubles the value of SALARY)

ADD JOHNS-PAY, PAULS-PAY, ALBERTS-PAY
GIVING COMPANY-PAY.

ADD ACCELERATION TO VELOCITY ROUNDED
ON SIZE ERROR GO TO SOUND-BARRIER.

ADD CORRESPONDING ELEMENT (X)
TO ELEMENT (Y).

ADD CORR SUB~TOTAL-RECORD TO TOTAL-RECORD ROUNDED
ON SIZE ERROR GO TO ERR.

PAGE 148




The ALTER Statement

The ALTER statement modifies a predetermined sequence of
operations.

FORMAT

ALTER procedure-name—1 TO [PROCEED T0OJ procedure—name-2

oo aaa0e s it eron — - o - - o —

[, procedure-name~3 TO [PROCEED TOl procedure-name—41. ..

e ——— e dagat . o -

Each procedure—name—-1, procedure-name-3, ..., 1is the name of a
paragraph that contains a single sentence consisting of a GO TO
statement without the DEPENDING phrase.

Each procedure—-name-—2, procedure-name-4, e is the name of a
paragraph or section in the Procedure Division.

Execution of the ALTER statement modifies the G0 TD statement in
the paragraph named procedure-name-1, procedure-name-3.,..., SO
that subsequent executions of the modified GO TO statements cause
transfer of control to procedure-name—-2, procedure—name-4,...,
respectively. Modified GO TO statements in independent segments
may. under some circumstances, be rteturned ¢to their initial
states. :

A GO TO statement in a section whose segment-number is greater

than or equal to 50 must not be referred to by an ALTER statement
in a section with a different segment-number.

PAGE 149




The CALL Statement

The CALL statement causes control to be transferred from one
object program to another, within the Tun unit.

FORMAT

CALL d{identifier-1) [USING data-name-~1 [,data-name-21 ... ]
—=== {literal—1 } —em———

The execution of a CALL statement causes control to pass to the
program whose name is specified by the value of literal-1 ogar
identifier~1, the ‘called’ program.

Literal—-1 must be a nonnumeric literal.

Identifier—-1 must be defined as an alphanumeric data item such
that its value can be a program name.

The called program can be another COBOL program or an assembly
language program. Refer to the User’s Guide for specific details.

Called programs may contain CALL statements. However, a called
program must not contain a CALL statement that directly or
indirectly calls the calling program.

The CALL statement may appear anywhere within a segmented program.
When a CALL statement appears in a section with a3 segment-number
greater than or equal to 50, the EXIT PROGRAM statement returns
control to the calling program.

The USING Phrase

The data-names specified by the USING phrase of the CALL statement
indicate those data items available to a calling program that may
be referred to in the called program. The order of appearance of
the data-names in the USING phrase of the CALL statement and the
USING phrase in the Procedure Division header is critical.
Corresponding data-names refer to a single set of data which is
available to the called and calling program. The correspondence is
positional, not by name. In the case of index—-names, no such
correspondence is established. Index—names in the called and
calling program always refer to separate indices.

PAGE 150




The USING phrase is included in the CALL statement only if ¢there
is a USING phrase in the Procedure Division header of the called
program, and the number of operands in each USING phrase must be
identical.

Each of the operands in the USING phrase must have been defined as
a data item in the File Section, Working-Storage Section, or
Linkage Section, and must have a level-number of O1 or 77.
Data-name-1, data-name-2, ...+ may be qualified when they
reference data items defined in the File Section.

CALL Examples:

CALL "BUBPRG1".

CALL REORDER
USING TABLE, INDEX-1, RESULT.

PAGE 151




The CLOSE Statement (Sequential I-0)

The CLOSE statement terminates the processing of files.

FORMAT
CLOSE file-name—-1 [{REEL} [WITH NO REWINDI]]

o s o o - g cante o —— s ordae e s e o

{UNIT>

CWITH {NO REWINDY 1

-t s oy e I

{UNIT?

CWITH {NO REWIND) ]

The function of a CLOSE statement (with no options) is ¢to cause
the operating system to close the file. For files opened for
OUTPUT, the operating system also writes an EOF as it «closes the
file.

If a STOP RUN statement is executed prior to closing the file, the
operating system will close the file without an EOF.

A CLOSE statement may only be executed for a file in an open mode.

Once a CLOSE statement has been executed for a file, no other
statement can be executed <that references that file, either
explicitly or implicitly, unless an intervening OPEN statement for
that file is executed.

The execution of a CLOSE statement causes the value of the FILE

STATUS data-item, if any, associated with file—name-i
(file-name—2, ...) to be updated.

PAGE 152




The REEL and UNIT Phrases

The CLOSE REEL and CLOSE UNIT statements are documentary only and
may be included or omitted at the user’s discretion.

The NO REWIND Phrase

CLOSE WITH NO REWIND prevents page advancing on files assigned to
the printer. It has no effect on other files.

The LOCK Phrase

The function of ¢the CLOSE WITH LOCK statement is to perform the
CLOSE function and set a flag to prevent the file from being
OPENed again during execution of this program.

CLOSE Examples

CLOSE TRANSACTION-FILE.
CLOSE DATA-BASE WITH LOCK.

CLOSE PRINT-FILE WITH NO REWIND.

PAGE 153




The CLOSE Statement (Relative and Indexed I/0)

The CLOSE statement terminates the processing of files.

FORMAT

CLOSE file—name—1 [WITH LOCK]

[, file—name—2 [WITH LOCKI1 ...

o s m aaom

The +function of a CLOSE statement (with no options) is to cause
the operating system to close the file. For files opened Ffor
OUTPUT, the operating system also writes an EOF prior to closing
the file.

If a STOP RUN statement is executed prior to closing the file, the
operating system will close the file without an EOF.

The files referenced in the CLOSE statement need not all have the
same organization or access.

A CLOSE statement may only be executed for a file in an open mode.

I+ a CLOSE statement has been executed for a file, no other
statement can be executed that references that file, either
explicitly or implicitly., unless an intervening OPEN statement for
that file is executed.

The execution of the CLOSE statement causes the value of the

specified FILE §8TATUS data item, it any., associated with
file-name—1 (file-name-2, ...) to be updated.

The LOCK Phrase

The +function of the CLOSE WITH LOCK statement is to perform the
CLOSE function and set a flag to prevent the file from being
OPENed during the execution of the program.

CLOSE Examples:

CLOSE TRANSACTION-FILE.

CLOSE DATA-BASE WITH LOCK.

PAGE 154




The COMPUTE Statement

The COMPUTE statement assigns the value of an arithmetic
expression to a data item.

FORMAT

COMPUTE identifier—1 [ROUNDED] = arithmetic—expression

— g, st aue g ——— . 20w qotm sputn st

£; ON SIZE ERROR imperative-statement]

. o s et e vt o

Identifier—1 must refer to either an elementary numeric item or an
elementary numeric edited item.

An arithmetic expression consisting of a single identifier or
literal provides a method of setting the value of identifier—1
equal to the value of the single identifier or literal.

The COMPUTE statement allows the vuser ¢to combine arithmetic
operations without the restrictions on composite operands and/or
receiving data items imposed by the arithmetic statements ADD,
SUBTRACT, MULTIPLY and DIVIDE.

Note: Exponentiation is not supported.

The ROUNDED Phrase

The COMPUTE statement may optionally include the ROUNDED phrase.
If, after decimal point alignment, the number of places in the
fraction of the result of an arithmetic operation is greater than
the number of places provided for the fraction of the
identifier~1, truncation is relative to the size provided for the
identifier—1. When rounding is requested, the absolute value of
the resultant-identifier is increased by one (1) whenever the most
significant digit of the excess is greater than or equal to five
(3).

When the low-order integer positions in an identifier-1 are
represented by the character ‘P’ in the picture for that
identifier, rounding or truncation occurs relative to the
rightmost integer position for which storage is allocated.

PAGE 155




The SIZE ERROR Phrase

If, after appropriate decimal point alignment. the absolute value
of the result exceeds the largest value that can be contained in
identifier~1, a size error condition exists. If the ROUNDED phrase
is specified, rounding takes place before checking for size error.

If identifier—1 has COMPUTATIONAL-3 usage, size error is detected
only for data items declared with an odd length picture clause.
Therefore all COMP-3 data items should be declared with an odd
number of character positions.

Division by zero always cauvses a size error condition.

If the SIZE ERROR phrase 1is not specified and a size error
condition exists, the value of the identifier—1 is undefined.

If the SIZE ERROR phrase is specified and a size error condition

exists, the wvalue identifier-1 is not altered and the
imperative-statement in the SIZE ERROR phrase is executed.

COMPUTE Examples

COMPUTE SALARY ROUNDED = WAGES # HOURS.

COMPUTE SECONDS (({HRS * &0) + MIN) # 40) + SEC.

COMPUTE AVERAGE TOTAL 7/ KOUNT
ON SIZE ERROR MOVE O TO AVERAGE.

COMPUTE PAY (DATE) ROUNDED

= RATE # 8.

PAGE 156




The DELETE Statement (Relative and Indexed 1-0)

The DELETE statement 1logically removes a record from a mass
storage file.

FORMAT

DELETE file—name RECORD [; INVALID KEY imperative—-statement]

—— s o s o s 1 s 2ot oo msoor

After the successful execution of a DELETE statement. the
identified record has been logically removed from the file and can
no longer be accessed.

The execution of a DELETE statement does not affect the contents
of the record area associated with file-name.

The associated file must be opened in the I-0 mode at the time of
execution of this statement.

For +files in the sequential access mode, the last input—output
statement executed for file—name prior to the execution of the
DELETE statement must have been a successfully executed READ
statement. The system logically removes from the file the record
that was accessed by that READ statement.

For a file in random or dynamic access mode, the system logically
removes from the file that record identified by the contents of
the key data item associated with file-name. If the file does not
contain the record specified by the key., an INVALID KEY condition
exists.

The execution of the DELETE statement causes the value of the

specified FILE STATUS data item, if any, associated with file-name
to be updated.

The INVALID KEY Phrase

The INVALID HKEY phrase must not be specified for a DELETE
statement which references a file which is in sequential access
mode.

The INVALID KEY phrase must be specified for a DELETE statement
which references a file which is not in sequential access mode and
for which an applicable USE procedure is not specified.

The current record pointer is not affected by the execution of a
DELETE statement.

PAGE 157




The DISPLAY Statement

The DISPLAY statement causes low volume data to be displayed on
the specified CRT terminal. DISPLAY statement phrases allow the
specification of position: form and format of the displayed data.

FORMAT

DISPLAY {{identifier-13 L[,UNIT {identifier—2}1]

——— s gy 4 sotgn oo — o a—

{literal—-1 ¥ {literal-2 ¥

[,LINE {identifier-3>]1 [,POSITION {identifier—4>]

— o o o s e s soas G000 et e

{literal-3 ¥ {literal-4 ¥

[,SI1ZE {identifier-5)1 [,BEEP] [,ERASEJ]}

e e - o - e o oo s oo o

{literal-5 ¥

C, {HIGH}] [,BLINK] [,REVERSE1} .
{LOW 2

The DISPLAY statement causes the contents of each operand
(identifier-1 or literal—-1}) to be transferred to the CRT device in
the order listed. The sending data item must have DISPLAY usage.

When a DISPLAY statement contains more than one operand, the
values of the operands are transferred in the sequence in which
the operands are encountered.

Note: Features which require support of the host operating
system and/or terminal hardware may not be supported on
all systems. Any features which are not supported will
compile correctly, but will be ignored at runtime. GSee
the User’s Quide for specific details.

The UNIT Phrase

The UNIT phrase, if specified, must be written first. The other
phrases may be written in any order.

The value of identifier-2 or literal—-2 in the UNIT phrase
specifies the station identifier of the CRT upon which the data is
to be displayed. I# the UNIT phrase is omitted, the CRT which
executed the program will be accessed.

PAGE 158




The LINE Phrase

The wvalue of identifier—-3 or literal-3 in the LINE phrase
specifies the line number upon which the data is to be displayed
on the screen of the CRT terminal, with one being the top line. If
the value is greater than the number of lines on the CRT screen,
it is adjusted to the maximum line number. If the value is zero or
the LINE phrase is not present in a DISPLAY statement, then data
is to be displayed on the next line below the current position of
the cursor on the CRT screen unless the value specified in the
POSITION phrase is also zero, in which case the data is to be
displayed on the line at the current position of the cursor on the
CRT screen. I#f incrementing to the next line generates a line
number greater than the maximum number of lines on the CRT screen,
the new line is displayed at the bottom.

The POSITION Phrase

The value of identifier—-4 or literal-4 in the POSITION phrase
specifies the number of the character to which the cursor is to be
positioned within the specified line prior to the displaying of
data on the screen of the CRT terminal, with 1 being the leftmost
character position within a line. If the value is greater than the
maximum number of characters within a line on the CRT screen, it
is adyjusted to the maximum character number.

I# the POSITION phrase is not specified, a value of one is assumed
for the first displayed operand and zero for each additional
operand displayed in the same statement. If a value of zero is
specified, the data is to be displayed starting at the next field
on the CRT screen (starting character position plus size of the
last ACCEPT or DISPLAY).

The SIZE Phrase

The value of identifier-5 or literal-5 in the 8SIZE phrase
specifies the number of characters to be displayed on the screen
of the CRT terminal, overriding the Data Division definition of
the field. I+ the SIZE phrase is not present or a value of zero is
specified, the size of identifier—1 or literal-1 is used. If
literal—-1 is a figurative constant, the literal has a size of one.
A size greater than 80 is treated as equal to 80.

PAGE 159




If the size of the display field is less than the size of the

sending data item, only the leftmost characters are displayed. If
the specified size is greater than the size of the sending date
item, the results are wunpredictable. I# the sending item is a
figurative constant, the constant fills the display field. No
conversions are made in the transfer to the display field.

The BEEP Phrase

The presence of the key word BEEP within a DISPLAY statement
causes a beep signal to occur on cursor positioning prior to the
display of the data. If the BEEP key word is omitted, no signal is
given on cursor positioning.

The ERASE Phrase

The presence of the key word ERASE within a DISPLAY statement
cavses the screen of the CRT terminal to be erased before the
content of identifier~1 or literal-1 is displayed on the screen.
When the ERASE phrase is not specified, then the screen is not
erased prior to the display of the data.

The HIGH/LOW Phrase

The presence of HIGH or LOW causes the data to be displayed at the
specified intensity. When HIGH or LOW 1is not specified, the
default display is HIGH.

The BLINK Phrase

The presence of thekey word BLINK causes the displayed data to be
BLINKed. the normal mode is no blink.

The REVERSE Phrase

The REVERSE key word causes the data to be displayed in REVERSE
video. The normal mode is no reverse.

PAGE 1460




N

DISPLAY Examples

DISPLAY "FLIGHT ARRIVING AT GATE", LINE FLT-LN,
POSITION 1, ERASE: GATE-NUMBER., HIGH, BLINK,

DISPLAY "ENTER JOB CODE: ™.
DISPLAY CRT-HEADER LINE 1 ERASE.
DISPLAY ZEROES SIZE OS.

DISPLAY QUOTE.

PAGE 161




The DIVIDE Statement

The DIVIDE statement divides one numeric data item into another
and stores the quotient.

FORMAT 1

DIVIDE {identifier—1} INTO identifier-2 [ROUNDED]

o cotre e aes it ao — — —— sty pots singt spote suns

{literal-1 ¥
[;ON SIZE ERROR imperative—statement]
FORMAT 2
DIVIDE {identifier—1} INTO {identifier-2)

{literal~-1 > {literal-2 >

GIVING identifier-3 [ROUNDED]

e e o o oo s ety

FORMAT 3

DIVIDE {identifier—1) BY {identifier-2}

s o iy o gus -

{literal-1 b {literal-2 ¥

GIVING identifier—-3 [ROUNDED1

s s s atnen oty ot s s voree suren soret

In Format 1. the value of identifier—1 or literal-1 is divided
into the value of identifier-—-2. The wvalue of the dividend
(identifier—2) is replaced by this quotient.

In Format 2, the wvalue of identifier—1 or literal—-l is divided

into the value of identifier—-2 or literal-2 and the result is
stored in identifier-3.

PAGE 162




In Format 3, the value of identifier—1 or literal—1l is divided by
the value of identifier—-2 or literal-2 and the result is stored in
identifier-3.

Each identifier must refer to an elementary numeric item: except
that any identifier associated with the GIVING phrase must refer
to either an elementary numeric item or an elementary numeric
edited item.

Each literal must be a numeric literal.

The ROUNDED Phrase

The DIVIDE statement may optionally include the ROUNDED phrase.

I#, after decimal point alignment: the number of places in the
fraction of the result of an arithmetic operation is greater than
the number of places provided for the fraction of the
resultant—identifier, truncation is relative to the size provided
for the resuvltant-identifier. When rounding is requested, the
absolute value of the resultant-identifier is increased by one
(1) whenever the most significant digit of the excess is greater
than or equal to #ive (5).

When the low-order integer positions in a resultant identifier are
represented by the character ‘P‘ in the picture for that
resultant-identifier, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute value
of the result exceeds the largest value that can be contained in
the associated resultant-identifier. a size error condition
exists. I# +the ROUNDED phrase is specified, rounding takes place
before checking for size error.

If the resuvltant—identifier has COMPUTATIONAL-3 usage, size error
is detected only for data items declared with an odd length
picture clause. Therefore all COMP-3 data items should be declared
with an odd number of character positions.

Division by z2ero always causes a size error condition.
If the SIZE ERROR phrase 1is not specified and a size error

condition exists, the wvalue of the resultant—identifier 1is
undefined.

PAGE 163




If the SIZE ERROR phrase is specified and a size error condition >
exists, the value of the resultant-identifier is not altered and
the imperative statement in the SIZE ERROR phrase is executed.

DIVIDE Examples

DIVIDE 10 INTO TOTAL-WORK-LODAD
GIVING MORRISS-WORK-~LOAD

DIVIDE TOTAL-WORK-LOAD BY 2.5
GIVING ALFREDS-WORK-LOAD ROUNDED
ON SIZE ERROR GO TO ALFRED-QUIT.

DIVIDE 2.5 INTO TOTAL.

PAGE 144




The EXIT Statement

The EXIT statement provides a common end point for a series of
procedures or the logical end of a called program. :
FORMAT

EXIT [PROGRAMI.

The EXIT statement must appear in a sentence by itsel#f.
The EXIT sentence must be the only sentence in the paragraph.

An EXIT statement without the word PROGRAM serves only to enable
the user to assign a procedure-name to a given point in a program.
Such an EXIT statement has no other effect on the compilation or
execution of the program.

An execution of an EXIT PROGRAM statement in a CALLED program
cauvuses control to be passed to the calling program. Execution of
an EXIT PROGRAM statement in a program which is not called behaves
as if the statement were an EXIT statement without the word
PROGRAM.

PAGE 165




The GO TO Statement

The GO TO statement cauvses control to be transferred from one part
of the Procedure Division to another.

FORMAT 1

60 TO procedure-name-1.

FORMAT 2

60 TO procedure—-name-1 [,procedure-name-21 ...,

procedure-~name-n DEPENDING ON identifier-—1.

I# a Format 1 GO TO statement appears in a consecutive sequence of
imperative statements within a sentence. it must appear as the
last statement in that sequence.

When a Format 1 GO TO statement 1is executed, control is
transferred to procedure-name—-1 or to another procedure-name if
the GO TO statement has been modified by an ALTER statement.

When a paragraph is referenced by an ALTER statement, that

paragraph can consist only of a paragraph header followed by a
Format—-1 GO TO statement.

The DEPENDING ON Phrase

When a Format 2 60 TO statement is executed, control is
transferred to procedure—name-1, procedure—name-2, etc.., depending
on the value of the identifier-1 being 1, 2, ..., n. If the value
of the identifier—~1 is anything other than the positive or
unsigned integers 1, 2, ..., n. then no transfer occurs and
control passes to +the next statement in the normal sequence for
execution.

Identifier-1 is the name of a numeric integer elementary item.

PAGE 166




The IF Statement

The IF statement causes a specified condition to be evaluated. The
subsequent action of the object program depends on whether the
value of the condition is true or false.

FORMAT
IF condition; {statement—1 3 {;ELSE statement-2 2}

{NEXT SENTENCEY} {;ELSE NEXT SENTENCEY}

Statement~1 and statement-2 represent either an imperative
statement or a rconditional statement. and either may be followed
by @ conditional statement.

When an IF statement is executed: the following transfers of
control occur:

I+ the condition is true, statement-1l is executed it
specified. I+ statement-1 contains a procedure branching or
conditional statement, control is explicitly transferred in
accordance with the rules of that statement. If statement-1
does not contain a procedure branching or conditional
statement, the ELSE phrase, if specified, is ignored and
control passes to the next executable sentence.

I# the condition is true and the NEXT SENTENCE phrase is
specified instead of statement-1, the ELSE phrase, if
specified, is ignored and control passes to the next
executable sentence.

PAGE 1&7




I# the condition is false, statement-1 or its surrogate NEXT
SENTENCE is ignored, and statement-2, if specified, is
executed. I#f statement-2 contains a procedure branching or
conditional statement, control is explicitly transferred in
accordance with the rules of that statement. If statement-2
does not «contain a procedure branching or conditional
statement, control passes to the next executable sentence. If
the ELSE statement—-2 phrase is not specified, statement-1 is
ignored and tontrol passes to the next executable sentence.

I+ the condition is false, and the ELSE NEXT SENTENCE phrase
is specified, statement—-1 is ignored, if# specified, and
control passes to the next executable sentence.

Statement-1 and/or statement-2 may contain an IF statement. In
this case the IF statement is said to be nested.

IF statements within IF statements may be considered as paired IF
and ELSE combinations, proceeding from left to right. Thus, any
ELSE encountered is considered to apply to the immediately
preceding IF that has not been already paired with an ELSE.

The ELSE NEXT SENTENCE phrase may be omitted if it immediately
precedes the terminal period of the sentence.

IF Examples

IF CHAR-STR IS ALPHABETIC,
MOVE CHAR-STR TO ALPHA-STR;
ELSE IF CHAR-STR IS NUMERIC,
MOVE CHAR-STR TO NUM;
DISPLAY NUM;
ELSE NEXT SENTENCE.

IF NUM = DOLD-NUM GO TO RE-SET.

IF ALPHA-STR NOT = “TEST"
ADD 1 TO ERROR-CNT.

IF NUM < LIMIT, ADD 1 TO NUM.

IF NUM IS LESS THAN LIMIT
ADD 1 TO NUM.

IF PRINT-SWITCH PERFORM PRINT-ROUTINE.

PAGE 1648




The INSPECT Statement

The INSPECT statement provides the ability to tally (Format 1),
replace (Format 2), or tally and replace (Format 3) occurrences of
single characters or groups of characters in a data item.

FORMAT 1

INSPECT identifier—1i

TALLYING identifier~2 FOR {{ALL > {identifier-33}
———————— —— —— {literal-1 >
{{LEADINGY ¥

{ CHARACTERS >

— v — e " ot - o o

[{BEFORE} INITIAL {identifier~412}1]
—————— {literal-2 >

FORMAT 2

INSPECT identifier-—1i

REPLACING <{{ALL } {identifier~5})> BY {identifier—6}

_________ —— {literal—-3 Y} -— {literal-4 >
{{LEADINGY} b
{{FIRST % ¥
{ CHARACTERS >

——— e e oy ot St s T

[{BEFORE) INITIAL {identifier-721
—————— {literal-5 ¥

PAGE 149




FORMAT 3

INSPECT identifier-—1

TALLYING identifier—-2 FOR {{ALL > {identifier-3)%
———————— —— {literal-1 >
{{LEADINGY >

s whe e bnans Poris vt ansas

{ CHARACTERS }

[{BEFORE} INITIAL {identifier—4}]
—————— {literal-2 >

REPLACING <{{ALL } {identifier-53) BY {identifier-6)

{literal-3 ¥ {literal—-4 >
{{LEADING)Y >
{{FIRST >} }
L CHARACTERS }

C{BEFOREY INITIAL {identifier-721
—————— {literal—-g ¥

Identifier-1 must reference either a group item or any category of
elementary item, described (either implicitly or explicitly) as
vsage is DISPLAY.

Identifier-3 ... identifier-n must reference either an elementary
alphabetic, alphanumeric or numeric item described (either
implicitly or explicitly) as usage is DISPLAY and a size of one
character.

Each literal may be either a figurative constant (which is treated
as a one-character data item) or a nonnumeric literal one
character in length.

The general rules that apply to the INSPECT statement are:

1. Inspection (which includes the comparison cycle, the
establishment of boundaries +for the BEFORE or AFTER phrase.
and the mechanism for tallying and/or replacing) begins at the
leftmost character position of the data item referenced by
identifier—1, regardless of its class, and proceeds from left
to right to the rightmost character position as described in
general rules 4 through 6.

PAGE 170




For wuse in the INSPECT statement:. the contents of the data
item referenced by identifier-—1, identifier-3, identifier-—4,
identifier-5, identifier—&4 or identifier-7 will be treated as
follows:

a. I+ any of identifier—-1, identifier-3, identifier—4,
identifier-5, identifier—6, or identifier-7 are described
as alphanumeric, the INSPECT statement treats the contents
of each such identifier as a character-string.

b. 1# any of identifier—-1, identifier—-3, identifier-4,
identifier—-5, identifier—-6, or identifier—-7 are described
as alphanumeric edited. numeric edited or unsigned numeric,
the data item is inspected as though it had been redefined
as alphanumeric (see general +tule 2a) and the INSPECT
statement had been written to reference the redefined data
item.

c. I# any of the identifier—1, identifier—3, identifier—4,
identifier-5, identifier—46, or identifier—7 are described
as signed numeric, the data item is inspected as though it
had been moved to an unsigned numeric data item of the same
length and then the rules in general rule 2b had been
applied. (See the MOVE statement.)

In general rules 4 through 10, all references to literal-l,
literal-2, literal-3, literal—-4, and literal—-5 apply equally
to the contents of the data item referenced by identifier-3,
identifier—4, identifier-5, identifier—4, and identifier-7,
respectively.

During inspection of the contents of the data item referenced
by identifier—1, each properly matched occurrence of literal-1
is tallied (Formats 1 and 3) and/or each properly matched
occurrence of literal-3 is replaced by literal—-4 (Formats 2
and 3).

The comparison operation to determine the occurrences of
literal-1 to be tallied and/or occurrences of literal-3 to be
replaced, occurs as follows:

a. The character specified by literal—1, literal-3 is compared
to successive characters, starting with the leftmost
character position in the data item referenced by
identifier-1. Literal—-1, literal-3 and that portion of the
contents of the data item referenced by identifier-1 match
if, and only i#, they are equal.

PAGE 171




I no match occurs in the comparison of literal-1,
literal-3, the comparison is repeated starting with the
next character position of identifier—1i.

Whenever a match occurs, tallying and/or replacing takes
place as described in general rtules 8 through 10. The
character position in the data item referenced by
identifier—1 immediately to the right of the character
position that caused the match is now considered to be the
leftmost character position of the data item referenced by
identifier-1, and the comparison cycle starts again with
literal-1, literal-3.

The comparison operation continues wuntil the rightmost
character position of the data item referenced by
identifier—1 has participated in a match or has been
considered as the leftmost character position. When this
occurs, inspection is terminated.

I# the CHARACTERS phrase is specified, an implied
one-character operand participates in the cycle described
in paragraphs OSa through 5d above, except that no
comparison to the contents of the data item referenced by
identifier—1 takes place. This implied character is
considered always to match the leftmost character of the
contents of the data item referenced by identifier—1
participating in the current comparison cycle.

The comparison operation defined in general rule 5 is affected
by the BEFORE and AFTER phrases as follows:

a.

I# the BEFORE and AFTER phrase is not specified, literal-1i,
literal-3 or the implied operand of the CHARACTERS phrase
participates in the comparison operation as described in
general rule 5.

PAGE 172
\

TN




b. If the BEFORE phrase 1is specified, the associated
literal—-1, literal-3 or the implied operand of the
CHARACTERS phrase participates only in those comparison
cycles which involve that portion of the contents of the
data item referenced by identifier—1 from its leftmost
character position up to, but not including the first
occurrence of literal-2, literal-5 within the contents of
the data item referenced by identifier—1. The position of
this +first occurrence is determined before the first cycle
of the comparison operation described in general rule 5 is
begun. If, on any comparison cycle, literal-1, literal-3 or
the implied operand of the CHARACTERS phrase is not
eligible to participate, it is considered not to match the
contents of the data item referenced by identifier—-1. If
there is no occurrence of literal-2. literal-5 within the
contents of the data item referenced by identifier—1, its
associated literal-l, literal-3, or the implied operand of
the CHARACTERS phrase participates in the comparison
operation as though the BEFORE phrase had not been
specified.

c. I# the AFTER phrase is specified, the associated literal-i,
literal-3 or the implied operand of the CHARACTERS phrase
may participate only in +those comparison cycles which
involve that portion of the contents of the data item
referenced by identifier-1 from <the character position
immediately to the +right of the rightmost character
position of the first occurrence of literal-2, literal-5,
within the contents of the data item referenced by
identifier—-1 and the rightmost character position of the
data item referenced by identifier—1. The position of this
first occurrence is determined before the +first cycle of
the comparison operation described in general rule 5 is
begun., If, on any comparison cycle, literal-—-1, literal-3,
or the implied operand of the CHARACTERS phrase is not
eligible to participate, it is considered not to match the
contents of the data item referenced by identifier—-1. 1If
there is no occurrence of literal-2, literal-5 within the
contents of the data item referenced by identifier~1, its
associated literal—1, literal-3, or the implied operand of
the CHARACTERS phrase is never eligible to participate in
the comparison operation.

Format 1

7. The contents of the data item referenced by identifier—-2 is
not initialized by the execution of the INSPECT statement.

PAGE 173




8. The rules for tallying are as follows:

a.

I+ the ALL phrase is specified, the contents of the data
item referenced by identifier—2 is incremented by one (1)
for each occurrence of literal—-1 matched within the
contents of the data item referenced by identifier-1.

I# the LEADING phrase is specified, the contents of the
data item referenced by identifier~2 is incremented by one
(1) for each contiguous occurrence of 1literal-1 matched
within the contents of the data item referenced by
identifier—1, provided that the leftmost such occurrence is
at the point where comparison began in the first comparison
cycle in which literal—-l was eligible to participate.

I# the CHARACTERS phrase is specified, the contents of the
data item referenced by identifier—2 is incremented by one
(1) for each character matched, in the sense of general
Trule Be, within the contents of the data item referenced by
identifier-1.

Format 2

%?. The rules for replacement are as follows:

a.

When the CHARACTERS phrase is specified, each character
matched, in the sense of general rule Se, in the contents
of the data item referenced by identifier—1 is replaced by
literal-4.

When ALL is specified. each occurrence of literal-3 matched
in the contents of the data item referenced by identifier-1
is replaced hy literal-—4.

When LEADING is specified, each contiguous occurrence of
literal-3 matched in the contents of the data item
referenced by identifier—-1 is replaced by literal—4,
provided that the leftmost occurrence is at the point where
comparison began in the first comparison cycle in which
literal—-3 was eligible to participate.

When FIRST is specified, the leftmost occurrence of

literal-3 matched within the contents of the data item
referenced by identifier-1 is replaced by literal-4.

PAGE 174




Format 3

10. A Format 3 INSPECT statement is interpreted and executed as
though two successive INSPECT statements specifying the same
identifier—1 had been written with one statement being a
Format 1 statement with TALLYING phrases identical to those
specified in the Format 3 statement, and the other statement
being a Format 2 statement with REPLACING phrases identical to
those specified in the Format 3 statement. The general rules
given for matching and counting apply to the Format 1
statement and the general rules given for matching and
replacing apply to the Format 2 statement.

PAGE 175




INSPECT

Examples:

INSPECT

Where
Where

INSPECT

Where
Where

INSPECT
ICEII

Where
Where
Where

INSPECT

Where
Where

INSPECT

REPLACING ALL

Where
Where
Where

INSPECT
INITIAL

Where
Where
Where

INSPECT

word before:
word after:

AFTER INITIAL

word TALLYING count FOR LEADING "L" BEFORE INITIAL "A",
word=LARGE, count=l.
word=ANALYST, count=0Q.

word TALLYING count FOR LEADING "A" BEFORE INITIAL "L*.
word=LARGE, count=0.

word=ANALYST, count=l1.

word TALLYING count FOR ALL
IILII.

"L", REPLACING LEADING "A" BY

word=CALLAR, count=2, word=CALLER.

word=SALAMI. count=1, word=SALEMI.

word=LATTER, count=1, word=LETTER.

word REPLACING ALL "A" BY "G" BEFORE INITIAL "X».

word=ARXAX, word=GRXAX.

word=HANDAX, word=HGNDGX.

word TALLYING count FOR CHARACTERS AFTER INITIAL "J*
IIA" BY I|Bll‘

word=ADJECTIVE, count=6, word=BDJECTIVE.

word=JACK, count=3:, word=JBCK.

word=JUJMAB, count=5, word=JUJMBB.

word REPLACING ALL "W" BY "Q" AFTER

IIRII.

word=RXXBOGWY, word=RXXBGQY.

word=YZACDWBR, word=YZACDWBR.

word=RAWRXEB, word=RAGRXEB.

word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A"“.
12 XZABCD
BBBBBABCD

PAGE 176




The MOVE Statement

The MOVE statement transfers data, in accordance with the rules of
editing, to one or more data areas.
FORMAT 1

MOVE {identifier—~1) TO identifier—2 [,identifier-3]..

{literal ¥

FORMAT 2

MOVE {CORRESPONDING) identifier—1 TO identifier-2

{CORR >
Identifier—1 and literal-—1 represent the sending area;
identifier—-2, identifier-3, ...: represent the receiving area(s).

An index data item cannot appear as an operand of a MOVE
statement.

The data designated by literal-1 or identifier—1 is moved first to

identifier—~2, then to identifier-3, ... . The rules referring to
identifier—-2 also apply to +the other receiving areas. Any
subscripting or indexing associated with identifier-2, e is

evaluvated immediately before the data is moved to the respective
data item.

Any subscripting or indexing associated with identifier—-1 is
evaluated only once, immediately before data is moved to the first
of the receiving operands. The result of the statement

MOVE a (b) TO b, ¢ (b)
is equivalent to:

MOVE a (b) TO temp

MOVE temp TO b
MOVE temp TO ¢ (b).

PAGE 177




Any MOVE in which the sending and receiving items are both
elementary items is an elementary move. Every elementary item
belongs to one of the following categories: numeric, alphabetic,
alphanumeric, numeric edited, alphanumeric edited. These
categories are described in the PICTURE clause. Numeric literals
belong to the category numeric, and nonnumeric literals belong to
the category alphanumeric. The figurative constant ZERD belongs to
the category numeric. The figurative constant SPACE belongs to the
category alphabetic. All other figurative constants belong to the
category alphanumeric.

The following rules apply to an elementary move between these
categories:

1. The figurative constant SPACE, a numeric edited,
alphanumeric edited, or alphabetic data item must not be
moved to a numeric or numeric edited data item.

2. A numeric literal, the figurative constant ZERO, a numeric
data item or a numeric edited data item must not be moved
to an alphabetic data item.

3. A non integer numeric literal or a non integer numeric data
item must not be moved to an alphanumeric or alphanumeric
edited data item.

4. All other elementary moves are 1legal and are performed
according to the rules given below.

Any necessary conversion of data from one form of internal
representation to another takes place during legal elementary
moves, along with any editing specified for the receiving data
item:

1. When an alphanumeric edited or alphanumeric item is a
receiving item, alignment and any necessary space~filling
takes place as defined under Standard Alignment Rules. 1¢
the size of the sending item is greater than the size of
the receiving item, the excess characters are truncated on
the right after the receiving item is filled. If the
sending item is described as being signed numeric, the
operational sign will not be moved; if the operational sign
occupies a separate character position (see the SIGN
clause), that character will not be moved and the size of
the sending item will be considered to be one less than its
actual size (in terms of standard data format characters).

PAGE 178




—

2. When a numeric or numeric edited item is the receiving
item, alignment by decimal point and any necessary
zero—filling takes place as defined under the Standard
Alignment Rules except where zeroes are replaced because of
editing requirements.

When a signed item is the receiving item, the sign of the
sending item is placed in the receiving item. (See the SIGN
clavse). Conversion of the representation of the sign takes
place as necessary. If the sending item is unsigned, a
positive sign is generated for the receiving item.

When an unsigned numeric item is the receiving item, the
absolute value of the sending item is moved and no
operational sign is generated for the receiving item.

When a data item described as alphanumeric is the sending
item; data is moved as if the sending item were described
as an unsigned numeric integer.

3. When & receiving field is described as alphabetic,
Justification and any necessary space—-filling takes place
as defined under the Standard Alignment Rules. If the size
of the sending item 1is greater <than the size of the
receiving item, the excess characters are truncated on the
right after the receiving item is filled.

Any move that is not an elementary move is treated exactly as if
it were an alphanumeric to alphanumeric elementary move, except
that there is no conversion of data from one form of internal
representation to another. In such a move, the receiving area will
be filled without consideration for the individual elementary or
group items contained within either the sending or receiving area,
except as noted in the DCCURS clause.

When a sending and receiving item share a part of their storage

areas, the result of the execution of such a statement is
undefined.

PAGE 179




The CORRESPONDING Phrase

When the CORRESPONDING phrase is specified, data items in
identifier-1 are moved to corresponding data items in identifier-2
according to the following rules:

A data item in identifier—-1 and a data item in identifier-2
are not designated by the key word FILLER and have the same
qualifiers wuwp to, but not including. identifier-1 and
identifier-2.

At least one of the data items is an elementary data item,

The description of identifier—-1 and identifier-2 must not
contain level—number &4, 77, or 88 or the USAGE IS INDEX
clause.

A data item that is subordinate to identifier-1 or
identifier-2 and contains a REDEFINES, RENAMES, OCCURS or
USAGE IS INDEX clause is ignored, as well as those data items
subordinate to the data item that contains the REDEFINES,
OCCURS, or USAGE IS INDEX clause. However, identifier-1 and
identifier—-2 may have REDEFINES or OCCURS <clauses or be
subordinate to data items with REDEFINES or OCCURS clauses.

PAGE 180




Data in the following chart summarizes the legality of the various
types of MOVE statements.

- A o S IS e Mt B i Sl S g s o o v s e e

i CATEGORY OF | ALPHANUMERIC INUMERIC INTEGER

SENDING : ! EDITED {INUMERIC NON-INTEGER!

DATA ITEM {ALPHABETIC ! ALPHANUMERIC INUMERIC EDITED i
| sxs=sssnsssssneessnres | sossssoonos | sosoossrssns | ssesesmssse s |
iALPHABETIC ! YES i YES ! NO I
‘- — R e P f e e '
{ALPHANUMERIC i YES H YES { YES i
iALPHANUMERIC EDITED ! YES ! YES H NO H
| { INTEGER ! NO i YES i YES i
{NUMERIC ! e R § e o e e e ;
! INON~INTEGER | NO ' NO i YES H
iNUMERIC EDITED i NO H YES H NO :

—— o -— - o e s datan e e St SRS bhay Gt e Sme av SO - D T et L e T Spearpery

MOVE Examples

MOVE INCOME TO TOTAL-INCOME.
MOVE 1 TO PAGE-COUNT, LINE-NUM
MOVE "MARMACK INDUSTRIES" TO TITLE-HEADER.
MOVE PERSON IN FILE-RECORD TO
PERSON OF ALABAMA (I-A OF ALABAMA),
PERSON OF CROSS-CENSUS.
MOVE NUM TO NUM-ED

MOVE TABLE-ELT (N, 1, M) TO NEXT-ENTRY
PREVIOQUS-ENTRY

MOVE -36.7 TO DEFICIT.
MOVE QUOTES TO SECTION-DIVIDER.
MOVE ZERO TO COUN-TER

MOVE ZEROES TO COUN-TER.

PAGE 181




The MULTIPLY Statement

The MULTIPLY statement causes numeric data items to be multiplied

and stores the result.

FORMAT 1

MULTIPLY {identifier-1}

i So o sy e Somen st

FORMAT 2

MULTIPLY {identifier—~1} BY {identifier-2}

{literal—1 ¥ {literal—-2 ¥

GIVING identifier-3 [ROUNDED]

- oo o100t o peen s P ]

- O o ot et v e e o

In Format 1, the value of identifier-1 or literal-1 is
by the value of identifier-2. The value of the
(identifier-2) is replaced by this product.

In Format 2, the value of identifier—1 or literal-1 is
by identifier—-2 or literal-2 and ¢the result is
identifier-3.

multiplied
multiplier

multiplied
stored in

Each identifier must refer to a numeric elementary item except
that in Format 2 the identifier following the word GIVING must

refer to either an elementary numeric item or an
numeric edited item.

Each literal must be a numeric literal.

PAGE 182

elementary




The ROUNDED Phrase

The MULTIPLY statement may optionally include the ROUNDED phrase.

If, after decimal point alignment, the number of places in the
fraction of the result of an arithmetic operation is greater than
the number of places provided for the fraction of the
resultant-identifier, truncation is relative to the size provided
for the resultant—identifier. When rtounding 1is requested., the
absolute value of the resultant-identifier 1is increased by one
(1) whenever the most significant digit of the excess is greater
than or equal to five (5).

When the low-order integer positions in a resuvltant-identifier are
represented by <the character ‘P‘ in the picture for that
resvltant—identifier, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute valve
of the Ttesult exceeds the largest value that can be contained in
the associated resvltant—identifier, a size error condition
exists. I# the ROUNDED phrase is specified, rounding takes place
before checking for size error.

If the resultant-identifier has COMPUTATIONAL-3 usage, size error
is detected only for data items declared with an odd length
picture clause. Therefore all COMP-3 data items should be declared
with an odd number of character positions.

If the SIZE ERROR phrase is not specified and a size error
condition exists, the value of +the rTesvltant-identifier 1is
undefined.

If the SIZE ERROR phrase is specified and a size error condition

exists, the value of the resultant-identifier is not altered and
the imperative statement is the SIZE ERROR phrase is executed

MULTIPLY Examples

MULTIPLY 10 BY INCOME.

MULTIPLY PRINCIPAL BY INTEREST-RATE
GIVING INTEREST ROUNDED.

MULTIPLY INFLATION-RATE BY EXPENSES
ON SIZE ERROR MOVE O TO ECONOMY-RATING.

PAGE 183




The OPEN Statement (Sequential I-0)

The OPEN statement initiates the processing of sequential files.

FORMAT

OPEN {{INPUT {file-name-~1 [WITH NO REWINDI >... ..

{OUTPUT {file—-name-2 [WITH NO REWIND] >... 2} .

{I-0 {file-name-3 ... Y ...

{EXTEND {file-name-4 }... A S

o o s ontag s e

The successful execution of an OPEN statement determines the
availability of the file and results in the file being in an open
mode.

The successful execution of an OPEN statement makes the associated
record area available to the program.

The files referenced in the OPEN statement need not all have the
same organization or access.

Prior to the successful execution of an OPEN statement for a given
file, no statement can be executed that references that file,
either explicitly or implicitly.

An OPEN statement must be successfully executed prior to the
execution of any of the permissible input-output statements. In
the Permissible Statements Table below, ‘X at an intersection
indicates that the specified statement, used in the sequential
access mode, may be used with the sequential file organization and
open mode given at the top of the column.

PAGE 184




| !
EStatement EInput 3 Output E Input-Qutput f Extend %
e x
WRITE  t 1 x 1 ox
IREWRITE | L D ox D :

B e T L L D P

Permissible Statements Table

A file may be opened with the INPUT., OUTPUT, EXTEND, and 1I1-0
phrases in the same program. Following the initial execution of an
OPEN statement for a file, each subsequent OPEN statement
execution for that same file must be preceded by the execution of
a CLOSE statement, without the LOCK phrase, for that file.

Execution of the OPEN statement does not obtain or release the
first data record.

The +file description entry for +file-name-1, #file-name-3 or
file-name—-4 must be equivalent to that used when this file was
created.

The execution of an OPEN statement causes the value of the

specified FILE 8TATUS data item, if any, associated with
file-name~1 ... to be updated.

The INPUT Phrase

For files being opened with the INPUT phrase, the OPEN statement
sets the current record pointer to the first record currently
existing within the file. If no records exist in the file, the
current Tecord pointer is set such that the next executed READ
statement for the file will result in an AT END condition.

The OQUTPUT Phrase

Upon successful execution of an OPEN statement with the OUTPUT
phrase specified, a file is created. At that time the associated
file contains no data records.

PAGE 185




The EXTEND Phrase

When the EXTEND phrase is specified, the OPEN statement positions
the +file immediately following the last logical record of that
file. Subsequent WRITE statements referencing the file will add
records to the +file as though the file has been opened with the
OQUTPUT phrase.

The EXTEND phrase and NO REWIND phrase can be wused only for
sequential files. The EXTEND phrase must not be specified for a
file whose device—type is INPUT.

When the EXTEND phrase is specified and the LABEL RECORDS clavuse
indicates label records are present, the execution of the OPEN
statement includes the following:

The beginning file labels are processed only in the case of a
single reel/unit file.

Processing then proceeds as though the file has been opened
with the OUTPUT phrase.

The I-0 Phrase

The I-D phrase permits the opening of a mass storage file for both
input and output operations. S8ince this phrase implies ¢the
existence of the file, it cannot be used if the mass storage file
is being initially created.

The I-D phrase can be used only for mass storage +files (files
assigned to the RANDOM device—-type).

When the 1I-0 phrase is specified and the LABEL RECORDS clause
indicates that label records are present, the execution of the
OPEN includes the following:

The labels are checked.

New labels are written.
The OPEN statement sets the current record pointer to the first
record currently existing in the file. If no records exist in the
file, the current record pointer is set such that the next

executed READ statement for that file will result in an AT END
condition.

PAGE 186




The NO REWIND Phrase

The NO REWIND phrases can only be used with sequential single
reel/unit files. Both phrases will be ignored if they do not apply

to the storage media on which the file resides.

If ¢the storage medium for the +file permits rewinding,
following rule applies:

the

When neither the EXTEND nor the NO REWIND phrase is specified,

execution of the OPEN statement causes the file to
positioned at its beginning.

When the NO REWIND phrase is specified, execution of the

be

OPEN

statement does not cause the file to be repositioned; the file
must be already positioned at its beginning prior to the

execution of the OPEN statement.

PAGE 187




The OPEN Statement (Relative and Indexed I-0)

The OPEN statement initiates the processing of mass storage files.

FORMAT

OPEN {{INPUT <{file-name-1 ... ..

{OUTPUT {file—-name—-2 >...2..

{I-0 {file-~name-3 >...>. ..} ..

The successful execution of an OPEN statement determines the
availability of the file and resuvlts in the file being in an open
mode.

The successful execution of the OPEN statement makes the
associated record area available to the program.

The +iles referenced in the OPEN statement need not all have the
same organization or access.

Prior to the successful execution of an OPEN statement for a given
file, no statement can be executed +that references that file,
either explicitly or implicitly.

A file may be opened with the INPUT, OUTPUT, and I-0 phrases in
the same program. Following the initial execution of an OPEN
statement for a file, each subsequent OPEN statement execution for
that same file must be preceded by the execution of a CLOSE
statement, without the LOCK phrase, for that file.

Execution of the OPEN statement does not obtain or release the
first data record.

I# 1label records are specified for the file, the beginning labels
are processed as follows:

When the INPUT phrase is specified, the execution of the OPEN
statement causes ¢the labels to be checked in accordance with
the System conventions for input label checking.

When the OUTPUT phrase is specified, the execution of the OPEN

statement causes the labels to be written in accordance with
the System conventions for output label writing.

PAGE 188




The behavior of the OPEN statement when label records are
specified but not present, or when label records are not
specified but are present, is undefined.

The file description entry for file-name—-1 or file-name-3 must be
equivalent to that used when this file was created.

The execution of the OPEN statement causes the value of the
specified FILE STATUS data item, if any, associated with
file—~name-1 ... to be updated.

An OPEN statement must be successfully executed prior to the
execution of any of the permissible input—-output statements. In
the Permissible Statements Table bhelow, ‘X’ at an intersection
indicates that the specified statement, used in the access mode
given for that row, may be used with the open mode given at the
top of the column.

PAGE 189




i
l
i
i
i
i
§
i

Open Mode

File Access

| % — i
é Mode E Statement EInput%DutputEInput—Dutputg
;Seque;tial % READ-—— E— X *é é _ﬁx *‘g
g CRewie X
: | START 1§ x ! tX :
: R { ! : !
E f DELETE_-__f -5— f X E
%Random % READ % X 5 E X E
g CWRITE 1t x & X i
§ | REWRITE | 1 X g
| T A A A
i | DELETE 1 i X i
iDynamic | READ X R
| WRITE | ox x
! {REWRITE 1 1 % x
% E-START -E—‘X g E X_ ~—§
E i DELETE ¢ ¢+ 1 x :

Permissible Statements Table

The INPUT Phrase

For +files being opened with the INPUT phrase. the OPEN statement
sets the current record pointer to the first record currently
existing within the file. If no records exist in the file, the
current record pointer is set such that the next executed Format 1
READ statement for the file will rtesult in an AT END condition.

PAGE 190




The OUTPUT Phrase

Upon successful execution of an OPEN statement with the OUTPUT
phrase specified, a file is created. At that time the associated
file contains no data records.

The I-0 Phrase

For files being opened with the I-0 phrase, the OPEN statement
sets the current record pointer to the first record currently
existing within the file. If no records exist in the +file, ¢the
current record pointer is set such that the next executed Format 1
READ statement for the file will result in an AT END condition.

PAGE 191




The PERFORM Statement

The PERFORM statement is used to transfer control explicitly to
one or more procedures and to return control implicitly whenever
execution of the specified procedure is complete.

FORMAT 1

PERFORM procedure-name—1 [{THROUGH} procedure~name-21]

- e . — - e e

FORMAT 2

PERFORM procedure-name—~1 [{THROUGH} procedure-name-21]

——— oy w— o - - o i oo oo

{integer ¥

FORMAT 3
PERFORM procedure—-name—1 [{THROUGH} procedure-name~21]

{THRU >

PAGE 192




FORMAT 4

PERFORM procedure-name-1 [{THROUGH} procedure-name-2]

L e e b ) o i s o e v

{THRU >

VARYING {identifier—2) FROM {identifier-3%
{index-name—1> {index—-name-—-2%
{literal-1 >

BY {identifier~4) UNTIL condition-1

— -t v g o

{literal-2 b 4

LAFTER {identifier~5> FROM {identifier—-6}
{index-name—~3} {index-name—4%
{literal-3 ¥y

BY {identifier-7} UNTIL condition-2

{literal-4 )

LAFTER {identifier~8) FROM {identifier-9}
{index—name-3% {index~-name~-6&6)}
{literal-5 >

BY {identifier-10) UNTIL condition-31]

{literal-6 )

Format 1 is the basic PERFORM statement. A procedure referenced by
this type of PERFORM statement is executed once and then control
passes to the next executable statement following the PERFORM
statement.

Format 2 is the PERFORM... TIMES. The procedures are performed the
number of times specified by integer or by the initial value of
the data item referenced by identifier—1 for that execution. I#f,
at the time of execution of a PERFORM statement, the value of the
data item referenced by identifier~1 is equal to zero or is
negative, control passes to the next executable statement
following the PERFORM statement. Following the execution of the
procedures the specified number of times, control is <transferred
to the next executable statement following the PERFORM statement.

PAGE 193




During execution of the PERFORM statement, references ¢to
identifier—1 cannot alter the number of times the procedures are
to be executed from that which was indicated by the initial value
of identifier-1.

Format 3 is the PERFORM...UNTIL. The specified procedures are
performed until the condition specified by the UNTIL phrase is
true. When the condition is true, control is transferred to the
next executable statement after the PERFORM statement. If the
condition is true when the PERFORM statement is entered. no
transfer to procedure—name-1 takes place, and control is passed to
the next executable statement following the PERFORM statement.

Format 4 is the PERFORM. .. VARYING. This variation of the PERFORM
statement is used to augment the values referenced by one or more
identifiers or index-names in an orderly fashion during the
execution of a PERFORM statement. In the +following discussion,
every reference to identifier as the object of the VARYING, AFTER
and FROM (current value) phrases also refers to index—names. When
index-name appears in a VARYING and/or AFTER phrase, it is
initialized and subsequently augmented (as described below)
according to the rules of the SET statement. When index-name
appears in the FROM phrase, identifier, when it appears in an
associated VARYING or AFTER phrase, is initialized according to
the rules of the SET statement; subsequent augmentation is as
described below.

In Format 4, when one identifier is varied. identifier-2 is set to
the value of literal-1 or the current value of identifier—3 at the
point of initial execution of the PERFORM statement; then, if the
condition of the UNTIL phrase is false, the sequence of
procedures, procedure-name—1 through procedure-name-2, is executed
once. The valuve of identifier-2 is augmented by the specified
increment or decrement value (the value of identifier—-4 or
literal-2) and condition—-1 is evaluated again. The cycle continues
until this condition is ¢true; at which point, control is
transferred to the next executable statement following the PERFORM
statement. If condition-1 is true at the beginning of execution of
the PERFORM statement, control is transferred to the next
executable statement following the PERFORM statement.

Each identifier represents a numeric elementary item described in
the Data Division. In Format 2, identifier—1 must be described as
a numeric integer.

Each literal represents a numeric literal.

The words THRU and THROUGH are equivalent.

PAGE 194




I an index-name is specified in the VARYING or AFTER phrase,
then: .

The identifier in the associated FROM and BY phrases must be
an integer data item.

The 1literal in the associated FROM phrase must be a positive
integer.

The literal in the associated BY phrase must be & non zero
integer.

If an index-name is specified in the FROM phrase, then:

The identifier in the associated VARYING or AFTER phrase must
be an integer data item.

The identifier in the associated BY phrase must be an integer
data item.

The literal in the associated BY phrase must be an integer.
Literal in the BY phrase must not be zero.

Condition-1, condition-2, condition-3 may be any conditional
expression.

When procedure-name-1 and procedure—-name—2 are both specified and
either is the name of a procedure in the declarative section of
the program then both must be procedure-names in the same
declarative section.

The data items referenced by identifier—4, identifier-7, and
identifier—10 must not have a zero value.

I# an index—name is specified in the VARYING or AFTER phrase, and
an identifier is specified in the associated FROM phrase, then the
data item referenced by the identifier must have a positive value.

When +the PERFORM statement is executed, control is transferred to
the first statement of the procedure named procedure-name~1. This
transfer of control occurs only once for each execution of a
PERFORM statement. For those cases when a transfer of control to
the named procedure does take place, an implicit transfer of
control to the next executable statement following the PERFORM
statement is established as follows:

PAGE 195




I# procedure-name-1 is a paragraph-name and procedure-name-2
is not specified, then the return is after the last statement
of procedure-name~1.

I# procedure—name-1 is a section-name and procedure—name—-2 is
not specified. then the return is after the last statement of
the last paragraph in procedure-name-1.

I# procedure-name~2 is specified and it is a paragraph-name.,
then the return is after the last statement of the paragraph.

I# procedure—name-2 is specified and it is a section-name,
then the return is after the last statement of the last
paragraph in the section.

There is no necessary relationship between procedure-name-1 and
procedure-name-2 except that a consecutive sequence of operations
is to be executed beginning at the procedure named
procedure—-name-~1 and ending with the execution of the procedure
named procedure-name-2. In particular, 60 TO and PERFORM
statements may occur between procedure-name-1 and the end of
procedure-name~2. If there are two or more logical paths to the
return point, then procedure-name—-2 may be the name of a paragraph
consisting of the EXIT statement, to which all of these paths must
lead.

I#+ control passes to these procedures by means other than a
PERFORM statement, control will pass through the last statement of
the procedure to the next executable statement as if no PERFORM
statement mentioned these procedures.

PAGE 196




ENTRANCE

v

v
/ —— \ True
- > | Condition-1 | > Exit
\ /
V False

Execute procedure-name-1]
THRU procedure-name—-2 |

lAugment identifier-2 withi
H current BY valve H

Flowchart for the VARYING Phrase of a PERFORM Statement Having One
Condition,

PAGE 197




In Format 4, when two identifiers are varied, identifier-2 and —

identifier-5 are set to the current value of identifier-3 and
identifier—6, respectively.

After the identifiers have been set, condition-1 is evaluated; if
true, control is transferred to the next executable statement:; if
false, condition-2 is evaluated. If condition-2 1is false,
procedure—name—1 through procedure-name-2 is executed once, then
identifer-5 is augmented by identifier-7 or literal-4 and
condition-2 is evaluated again. This «cycle of evaluation and
augmentation continues until ¢this condition is +true. When
condition-2 is true, identifier-5 is set to the value of literal-3
or the current value of identifier-6, identifier-2 is augmented by
identifier—-4 and condition-1 is re—-evaluated. The PERFORM
statement is completed if condition-1 is true; if not, the cycles
continue until condition—1 is true.

During the execution of the procedures associated with the PERFORM
statement, any change to the VARYING variable (identifier—-2 and
index-name-1), the BY variable (identifier-4), the AFTER variable
(identifier—-5 and index-name-3), or the FROM variable
(identifier~3 and index-name-2) will be taken into consideration
and will affect the operation of the PERFORM statement.

PAGE 198




ENTRANCE

v

1Set identifier—~2 and identifier—-5i
H to current FROM valvues H

v

/ - ~-=\ True
————————————— >f Condition-1 |(-————————me————3 Exit
H \ - /
H i
H V False
H / \ True
| e e e > Condition-2 (-———————————————
P \ -/ H
Vo H i
I V False v
! { |Execute procedure~name-i! iGet identifier—-5 to its!
{ I ITHRU procedure-name-2 H { current FROM value |
1 1 e s e it S S obte o ks San s e B spwme e e ot S st o4 e oA Skl dam S5O D GOt O S e S NS S Sep S S0 e S e
to v v
{ ——lAugment identifier-5 withi tAugment identifier—-2 withi
H H current BY valve i H current BY value i
1

- - o otmse — - v ponsa o oty

Flowchart for the VARYING Phrase of a PERFORM Statement Having Two
Conditions.

PAGE 199




ENTRANCE

v

} Set H
iidentifier-2, identifier—5, |
H identifier—-8 '
i ¢to current FROM values |

current BY value |

current BY value! current BY value!

w— - -

! : ;
--- lidentifier—-8 with! !identifier-5 with! ! identifier—2 with!
! : !

v
[ ————— \ True
>! Conditon-1 {——————wrem————— > Exit
H \ o e e e e e /
' { False
H \Y
: / \ True
| ——rmeeeee >i Condition—-2 | -
L \ / H
Vo i False i
I v H
I [ = e e e e e \ True H
Pl e >1 Condition-3 |-——————ew——— H
L \ / H !
I i False H H
L P \" Vv Vv
HE B H Execute { H Set H ! Set :
b iprocedure—name-11 tidentifier-8 | tidentifier-5 |
Vb {THRU procedure~- | ito its current! ito its current!
(O I H name—2 H { FROM value | i FROM value |
N | H !
40 Vv % Vv
HEE B Augment H Augment H Augment H
[] 3

——— — o - —— o oo e s - - - am

Flowchart for the VARYING Phrase of a PERFORM GStatement Having
Three Conditions.

PAGE 200




At the termination of the PERFORM statement identifier-5 contains
the current value of identifier-4. Identifier-2 has a value that
exceeds the last setting by an increment or decrement value,
unless condition—1 was true when the PERFORM statement was
entered., in which case identifier—-2 contains the current value of
identifier-3.

When two identifiers are varied, identifier-5 goes through a
complete cycle (FROM, BY, UNTIL) each time identifier-2 is varied.

For three identifiers the mechanism is the same as for two
identifiers except that identifier—8 goes through a complete cycle
each time that identifier-5 is augmented by identifier-7 or
literal-4, which in turn goes through a complete cycle each time
identifier-2 is varied.

After the completion of a Format 4 PERFORM statement, identifier-35
and identifier-8 contain the current value of identifier—~& and
identifier-9 respectively. Identifier—2 has a value that exceeds
its last used setting by one increment or decrement value, wunless
condition-1 is true when the PERFORM statement is entered, in
which case identifier-2 contains the current value of
identifier-3.

If a sequence of statements referred teo by a PERFORM statement
includes another PERFORM statement, the sequence of procedures
associated with the included PERFDORM must itself either be totally
included in, or totally excluded from the logical sequence
referred to by the first PERFORM. Thus an active PERFORM
statement, whose execution point begins within the range of
another active PERFORM statement, must not allow control to pass
to the exit of the other active PERFORM statement; furthermore,
two or more such active PERFORM statements may not have a common
exit. See the valid illustrations below.

x PERFORM a THRU m

d PERFORM £ THRU

| o= am oo on -

PAGE 201




x PERFORM a THRU m

d PERFORM £ THRU |

-»
1
i
I
!
i
i
!
{
i
i

x PERFORM a THRU m

a
|
!
|
I
I
!
]
]
i

[ —

d PERFORM £ THRU

A PERFORM statement that appears in a section that is not in an
independent segment can have within its range. in addition to any
declarative sections whose execution is caused within that range.,
only one of the following:

Sections and/or paragraphs wholly contained in one or more
non-independent segments.

Sections and/or paragraphs wholly contained in a single
independent segment.

A PERFORM statement that appears in an independent segment can
have within its range. in addition to any declarative sections
whose execution is caused within that range, only one of the
following:

Sections and/or paragraphs wholly contained in one or more
non—independent segments.

Sections and/or paragraphs wholly contained in the same
independent segment as the PERFORM statement.

PAGE 202




The READ Statement (Sequential I/0)

The READ statement makes available the next logical record from a
file.

FORMAT

READ file-name RECORD [INTD identifier]

oo o oot 2o oo wrme.

[i AT END imperative—statement]

The associated file must be open in the INPUT or I-0 mode at the
time this statement is executed.

The record to be made available by the READ statement is
determined as follows:

I# the current record pointer was positioned by the execution
of the OPEN statement, the record pointed to by the current
record pointer is made available.

I# the current record pointer was positioned by the execution
of a previous READ statement, the current record pointer is
updated to point to the next existing record in the file and
then that record is made available.

The execution of the READ statement causes the value of the FILE
STATUS data item, if any, associated with file-name to be updated.

When the logical records of a file are described with more than
one record description the contents of any data items which lie
beyond the range of the current data record are undefined at the
completion of the execution of the READ statement.

If, at the time of execution of a READ statement, the position of
the current record pointer for that #file is wundefined, the
execution of that READ statement is unsuccessful.

Following the wunsuccessful execution of any READ statement, the

contents of the associated record area and the position of the
current record pointer are undefined.

PAGE 203




The INTO Phrase

I# the INTO phrase is specified, the record being read is moved
from the record area to the area specified by identifier according
to the rules specified for the MOVE statement. The implied MOVE
does not occur if the execution of the READ statement was
unsuccessful. Any subscripting or indexing associated with
identifier is evaluated after the 7record has been Tead and
immediately before it is moved to the data item.

When the INTO phrase is used, the record being read is available
in both the input record area and the data area associated with
identifier.

The INTO phrase must not be used when the input file contains
logical records of various sizes as indicated by thier record
descriptions. The storage area associated with identifier and the
record area associated with file-name must not be the same storage
area.

The AT END Phrase

If, at ¢the ¢time of the execution of a READ statement, no next
logical record exists in the file, the AT END condition occurs,
and the execution of the READ statement 1is considered
unsuccessful.

When the AT END condition is recognized the following actions are
taken in the specified order.

A value is placed into the FILE STATUS data item, if specified
for this file, to indicate an AT END condition.

If the AT END phrase is specified in the statement causing the
condition, control is transferred to the AT END
imperative-statement. Any USE procedure specified for ¢this
file is not executed.

I+ the AT END phrase is not specified, then a USE procedure
must be specified, either explicitly or implicitly., for ¢this
file and that procedure is executed.

When the AT END condition has been recognized, a READ statement
for that file must not be executed without first executing a
successful CLOSE statement followed by the execution of a
successful OPEN statement for that file.

The AT END phrase must be specified if no applicable USE procedure
is specified for file—name.

PAGE 204




The READ Statement (Relative and Indexed I-0)

The READ statement makes available a specified record from a mass
storage file.

FORMAT 1

READ file-name [NEXT] RECORD [WITH NO LOCK] CINTD identifier)

———— e — o g swm - 20t e man som

[; AT END imperative-statement]

FORMAT 2

READ file—name RECORD [WITH NO LOCKJ [INTO identifier]

[iKEY IS data-namel

£i INVALID KEY imperative~statement]

Format 1 must be used for all files in sequential access mode.

The NEXT phrase must be specified for files in dynamic access
mode, when records are to be retrieved sequentially.

Format 2 is used for files in random access mode or for files in
dynamic access mode when records are to be retrieved randomly.

The INVALID KEY phrase or the AT END phrase must be specified if
no applicable USE procedure is specified for file—name.

The associated files must be open in the INPUT or I-0 mode at the
time this statement is executed.

The HWKEY phrase may be specified only when the organization of
file-name is index. When the KEY clause is present, data-name must
be the name of one of the record keys associated with file~name.
Data-name may be qualified.

PAGE 205




The record to be made available by a Format 1 READ statement is
determined as follows:

The record, pointed to by the current record pointer, is made
available provided that the current record pointer was
positioned by the START or OPEN statement and the record is
still accessible through the path indicated by the current
Tecord pointer. If the record is no longer accessible, which
may have been caused by the deletion of the record, the
current record pointer is wupdated to point to the next
existing record in the file and that record is then made
available.

I# the current record pointer was positioned by the execution
of a previous READ statement, the current record pointer is
updated to point to the next existing record in the file and
then that record is made available.

The execution of the READ statement causes the value of the FILE
STATUS data item, if any, associated with file-name to be updated.

When the logical records of a file are described with more than
one record description, these records auvtomatically share the same
storage area; this is equivalent to an implicit redefinition of
the area. The contents of any data items which 1lie beyond the
range of the current data record are undefined at the completion
of the execution of the READ statement.

If, at the time of execution of a Format 1 READ statement. the

position of current record pointer for that file is undefined, the
execution of that READ statement is unsuccessful.

The INTO Phrase

I# +the INTO phrase is specified, the record being read is moved
from the record area to the area specified by identifier according
to the rules specified for the MOVE statement. The implied MOVE
does not occur if the execution of the READ statement was
unsuccessful. Any subscripting or indexing associated with
identifier 1is evaluated after the record has been read and
immediately before it is moved to the data item.

When the INTO phrase is used. the record being read 1is available
in both the input record area and the data area associated with
identifier.

The INTO phrase must not be used when the input file contains
logical records of various sizes as indicated by their record
descriptions. The storage area associated with identifier and the
record area associated with file-name must not be the same storage
area.

PAGE 206




Following the wunsuccessful execution of any READ statement, the
contents of the associated record area and the position of the
current record pointer are undefined.

For relative files if the RELATIVE KEY phrase is specified, the
execution of a Format 1 READ statement updates the contents of the
RELATIVE KEY data item such that it contains the relative record
number of the record made available.

For relative files the execution of a Format 2 READ statement sets
the current record pointer to, and makes available, the record
whose relative record number is contained in the data item named
in the RELATIVE KEY phrase for the file. If the file does not
contain such a recovrd, the INVALID KEY condition exists and
execution of the READ statement is unsuccessful.

For an indexed +file being sequentially accessed, records having
the same duplicate value in an alternate record key which is the
key of reference are made available in the same order in which
they are released by execution of WRITE statements, or by
execution of REWRITE statements which create such duplicate
values.

For an indexed file if the KEY phrase is specified in a Format 2
READ statement, data-name is established as the key of reference
for this retrieval. If the dynamic access mode is specified, this
key of reference is also used for retrievals by any subsequent
executions of Format ¢ READ statements for the +file vuntil a
different key of reference is established for the file.

If the KEY phrase is not specified in a Format 2 READ statement,
the prime record key is established as the key of reference for
this retrieval.

If the dynamic access mode is specified, this key of reference is
also used for retrievals by any subsequent executions of Format 1
READ statements for the file until a different key of reference is
established for the file.

For indexed files the execution of a Format 2 READ statement
causes the value of the key of reference to be compared with the
value contained in the corresponding data item of the stored
records in the file, until the first record having an equal value
is +found. The current record pointer is positioned to this record
which is then made available. If no record can be so identified,
the INVALID KEY condition exists and execution of the READ
statement is unsuccessful.

PAGE 207




The AT END Phrase

I#, at the time of the execution of a Format 1 READ statement, no
next logical record exists in the file. the AT END condition
occurs, and the execution of the READ statement 1is considered
unsuccessful.

When the AT END condition is recognized, the following actions are
taken in the specified order:

A value is placed into the FILE STATUS data item, if specified
for this file, to indicate an AT END condition.

I# the AT END phrase is specified in the statement causing the
condition, control is transferred to the AT END
imperative—statement. Any USE procedure specified for ¢this
file is not executed.

I# the AT END phrase is not specified, then a USE procedure
must be specified, either explicitly or implicitly, for this
file. and that procedure is executed.

When the AT END condition occurs, execution of the
input—output statement which caused the condition is
unsuccessful.
When the AT END condition has been recognized, a Format 1 READ
statement for that file must not be executed without first
executing one of the following:

A successful CLOSE statement followed by the execution of a
successful OPEN statement for that file.

A successful START statement for that file.
A successful Format 2 READ statement for that file.
For a file for which dynamic access mode is specified, a Format 1

READ statement with the NEXT phrase specified causes the next
logical record to be retrieved from the file.

PAGE 208




The REWRITE Statement (Sequential I/0)

The REWRITE stafement logically replaces a record existing in a
mass storage file.

FORMAT

REWRITE record-name L[FROM identiferl

s satve g v e S v e soten s o

Record-name and identifier must not refer to the same storage
area.

Record-name is the name of a logical record in the File Section of
the Data Division and may be qualified.

The file associated with record-name must be a mass storage +file
and must be open in the I-0 mode at the time of execution of this
statement.

The last input-output statement executed for the associated +file
prior to the execution of the REWRITE statement must have been a
successfully executed READ statement.

The number of character positions in the record referenced by
record—-name must be equal to the number of character positions in
the record being replaced.

The logical record released by successful execution of the REWRITE
statement is no longer available in the record area.

The current record pointer is not affected by the execution of a
REWRITE statement.

The execution of the REWRITE statement causes the value of the

FILE STATUS data item, if any, associated with the file to be
updated.

PAGE 209




The FROM Phrase

The execution of a REWRITE statement with the FROM phrase is
equivalent to the execution o#f:

MOVE identifier TO record-name
followed by the execution of the same REWRITE statement without
the FROM phrase. The contents of the record area prior to the

execution of the implicit MOVE statement have no effect on the
execution of the REWRITE statement.

PAGE 210




The REWRITE Statement (Relative and Indexed I1-0)

The REWRITE statement 1logically replaces a record existing in a
mass storage file.

FORMAT

REWRITE record—-name L[FROM identifier]

e qotng aman Sopme ety o e —

[; INVALID KEY imperative-statement]

— ot 2022 o s uttn seste

Record—name and identifier must not refer to the same storage
area.

Record-name is the name of a logical record in the File Section of
the Data Division and may be qualified.

For relative files the INVALID KEY phrase must not be specified
for a REWRITE statement which references a file in sequential
access mode.

The INVALID KEY phrase must be specified in the REWRITE statement
for files in the random or dynamic access mode for which an
appropriate USE procedure is not specified.

For indexed files the INVALID KEY phrase must be specified in the
REWRITE statement for files for which an appropriate USE procedure
is not specified.

The file associated with record—-name must be open in the I-0 mode
at the time of execution of this statement.

For +files in the sequential access mode, the last input-output
statement executed for the associated file prior to the execution
of the REWRITE statement must have been a successfully executed
READ statement without the WITH NO LOCK phrase.

The number of character positions in the rtecord referenced by
record-name must be equal to the number of character positions in
the record being replaced.

The logical record released by a successful execution of the
REWRITE statement is no longer available in the record area.

PAGE 211




The current record pointer is not affected by the execution of a 7~

REWRITE statement.

The execution of the REWRITE statement causes the value of the
FILE STATUS data item, if any, associated with the file to be
vpdated.

The INVALID KEY Phrase

For a relative file accessed in either random or dynamic access
mode, the System logically replaces the record specified by the
contents of the key data item associated with the file. I# ¢the
file does not contain the record specified by the key, the INVALID
KEY condition exists.

For indexed files the INVALID KEY condition exists when:
The access mode is sequential and the value contained in the
prime record key data item of the record to be replaced is not

equal to the value of the prime record read from the field, or

The value contained in the prime record key item does not
equal that of any record stored in the file.

When the INVALID KEY condition exists the updating operation does
not take place and the data in the record area is unaffected.

The FROM Phrase

The execution of a REWRITE statement with the FROM phrase is
equivalent to the execution of:

MOVE identifier TO record—name
followed by the execution of the same REWRITE statement without
the FROM phrase. The contents of the record area prior to the

execution of the implicit MOVE statement have no effect on the
execution of the REWRITE statement.

PAGE 212




The SET Statement

The SET statement establishes reference points for table handling
operations by setting index-names associated with table elements.

FORMAT 1
SET {identifier—1) [,identifier—2] ...3¥ TO {identifier-33
——— ~= {index—-name—3}
{index-name-1} [, index-name-21] {integer-—1 >
FORMAT 2
SET index—name—4 [, index—name-5] ... {UP BY 2} {identifier—4>

{DOWN BY}> {integer-2 >

All references ¢to index—name-1i, identifier-1, and index-name-4
apply equally to index-name-2, identifier-2, and index—-name-95,
respectively.

Identifier—-1 and identifier-3 must name either index data items,
or elementary items described as an integer.

Identifier—-4 must be declared as an elementary numeric integer.
Integer—1 and integer-2 may be signed. Integer-1 must be positive.

Index—names are considered related to a given table and are
defined by being specified in the INDEXED BY clause.

If index-name-3 is specified, the value of the index before the
execution of the SET statement must correspond ¢to an oaccurrence
number of an element in the associated table.

If index—name—4, index—-name-5 is specified, the value of the index
both before and after the execution of the SET statement must
correspond to an occurrence number of an element in the associated
table. If index—name-1, index-name—2 is specified, the value of
the index after the execution of the SET statement must correspond
to an occurrence number of an element in the associated table. The
value of ¢the index associated with an index—name after the
execution of a PERFORM statement may be undefined.

PAGE 213




In Format 1, the following action occurs:

Index-name-1 is set to a value causing it to refer to the
table element that corresponds in occurrence number to the
table element referenced by index—-name-3, identifier—-3, or
integer-~1. I# identifier-3 1is an index data item, or i#f
index—-name-3 is related to the same table as index—-name—1, no
conversion takes place.

If identifier—1 is an index data item, it may be set equal to
either the contents of index-name-3 or identifier-3 where
identifier—-3 is also an index data item; no conversion takes
place in either case.

I# identifier—1 is not an index data item, it may be set only
to an occurrence number that corresponds to the value of
index—name~3. Neither identifier—-3 nor integer-1 can be wused
in this case.

The process is repeated for index—name-2, identifier-2, etc..
if specified. Each time the value of index-name-3 or
identifier~3 is wused as it was at the beginning of the
execution of the statement. Any subscripting or indexing
associated with identifier—1, etc., is evaluated immediately
before the value of the respective data item is changed

In Format 2, the contents of index—-name—4 are incremented (UP BY)
or decremented (DOWN BY) by a value that corresponds to the number
of occurrences represented by the value of integer-2 or
identifier-4; thereafter, the process is repeated for
index-name-3, etc. Each time the value of identifier—4 is used as
it was at the beginning of the execution of the statement.

Data in the following chart represents the validity of various
operand combinations in the SET statement.

Receiving Item

Sending Item !Integer Datal! Index  {Index Datal
H Item {  Name H Item H

- —— -1 - | —————— } - -1
iInteger Literal H No i Valid H No H
iInteger Data Item ! No { Valid H No :
{Index—Name i Valid i Valid i Valid#* :
iIndex Data Item H No i Valid# | Valid# H

#No conversion takes place

PAGE 214

,/—-\‘




The START Statement (Relative and Indexed I-0)

The START statement provides a basis for logical positioning
within a file, for subsequent sequential retrieval of records.

FORMAT

START file—name L[KEY {IS EQUAL TO } data-namel
{IS = ¥
{IS GREATER THAN )}
{IS > b
{IS NOT LESS THANY

{IS NOT < >

Note: The required relational characters ‘>’, ‘<’ and ‘=’ are
not underlined to avoid confusion with other symbols.

File-name must be the name of a file with sequential or dynamic
access.

Data-name may be qualified.

The INVALID KEY phrase must be specified if no applicable USE
procedure is specified for file-name.

I# file-name is the name of a relative file then data-name, if
specified, must be the data item specified in the RELATIVE KEY
phrase of the associated file control entry.

I#f file-name is the name of an indexed file then data-name, if
specified, may reference the data items specified as the record
keys associated with file—-name or it may reference any data item
of category alphanumeric whose leftmost character position

corresponds to the leftmost character position of a record key
data item.

File-name must be open in the INPUT or I-D mode at the time that
the START statement is executed.

If the KEY phrase is not specified the relational operator ‘IS
EQUAL TO’ is implied.

PAGE 215




The type of comparison specified by the relational operator in the —
‘KEY phrase occurs between a key associated with a record in the
file referenced by file-name and a data item.

If file—-name references a relative file, the data item used in
the comparison is the relative key associated with file-name.

I# file-name references an indexed file, the data item used in
the comparison is either the prime record key associated with
file-name or. if the KEY phrase is specified, the data item
referenced in the KEY phrase. I+ the operands of the
caoamparison are of unequal size, comparison proceeds as though
the 1longer one were truncated on the right such that its
length is equal to that of the shorter. All other nonnumeric
comparison rules apply except that the presence of the PROGRAM
COLLATING SEQUENCE clavse will have no effect on the
comparison.

The current record pointer is positioned to the first logical
record currently existing in the file whose key satisfies the
comparison.

I# the comparison is not satisfied by any record in the file,
an INVALID KEY condition exists, the execution of the START
statement is unsuccessful, and the poaosition of the current
record pointer is undefined.

The execution of the START statement causes the value of the FILE
STATUS data item, if any, associated with file-name to be updated.

PAGE 216




The STOP Statement

The STOP statement causes a permanent or temporary suspension of
the execution of the obgject program.

FORMAT

STOP {RUN >

{literal}
The 1literal may be numeric or nonnumeric or may be any figurative
constant.
If a STOP RUN statement appears in a consecutive sequence of
imperative statements within a sentence, it must appear as the

last statement in that sequence.

If the RUN phrase is used, then a STOP RUN message is logged and
the execution is terminated.

I# STOP literal 1is specified, the literal is logged in a STOP
“literal-value" message and the execution is suspended.

STOP Examples:

STOP RUN.
STOP "END OF PROCEDURE".

PAGE 217




The SUBTRACT Statement

The SUBTRACT statement is used to subtract one, or the sum of tuwo
or more, numeric data items from a numeric data item and store the

result.

FORMAT 1
SUBTRACT {identifier-1) [,identifier-21

—— e - - o S s W

{literal-1 > [,literal-2 1

FROM identifier—-m [ROUNDED]

s > Wity oot soe sty

FORMAT 2
SUBTRACT d{identifier—12} [, identifier-21 ..

{literal-1 } [,1literal-2 1

FROM {identifier-m)> GIVING identifier-n L[ROUNDEDI]

{literal-m ¥

[;ON SIZE ERROR imperative—statement]

FORMAT 3

as coron v o o toans o e

{CORR }

FROM identifier-2 [ROUNDED]

o e 0t sty b o aoine

[; ON SIZE ERROR imperative-statementl

In Format 1, all literals or identifiers preceding the word FROM
are added together and this total is subtracted from the current
value of identifier-m storing the result immediately into

identifier—-m.

PAGE 218




In Format 2, all literals or identifiers preceding the word FROM
are added together, the sum is subtracted Ffrom literal-m or
identifier—m and the result of the subtraction is stored as the
new value of identifier—n.

I#f Format 3 1is wused, data items in identifier-1 are subtracted
from and stored into corresponding data items in identifier-2.

Each identifier must refer to a numeric elementary item except
that:

In Format 2. the identifier following the word GIVING must
refer to either an elementary numeric item or an elementary
numeric edited item.

In Format 3, the identifiers must refer to group items.

Each literal must be a numeric literal.

The ROUNDED Phrase

The SUBTRACT statement may optionally include the ROUNDED phrase.

If, after decimal point alignment, the number of places in the
fraction of the result of an arithmetic operation is greater than
the number of places provided for the fraction of the
resultant—identifier, truncation is relative to the size provided
for the resvultant—identifier. When rounding is requested, the
absolute value of the resultant—-identifier is increased by one (1)
whenever the most significant digit of the excess is greater than
or equal to five (3).

When the low-order integer positions in a resultant—identifier are
represented by the character ‘P’ in the picture for that
resultant—-identifier, rounding or truncation occurs relative ¢to
the rightmost integer position for which storage is allocated.

The SIZE ERROR Phrase

I1#, after appropriate decimal point alignment, the absolute value
of the result exceeds the largest value that can be contained in
the associated resultant-identifier, a8 size error condition
exists. If the ROUNDED phrase is specified, rounding takes place
before checking for size error.

PAGE 219




If the resultant-identifier has COMPUTATIONAL-3 usage., size error —

is detected only for data items declared with an odd 1length
picture clause. Therefore, all COMP-3 data items should be
declared with an odd number of character positions.

If the SIZE ERROR phrase is not specified and a size error
condition exists, the value of the resultant—-identifier is
undefined.

If the SIZE ERROR phrase is specified and a size error condition
exists, the value of the resultant—identifier(s) affected by the
size error is not altered.

If the CORRESPONDING phrase is specified, and any of the
individual subtractions produce a size error condition, the
imperative-statement is not executed until all of the individual
subtractions are completed.

The CORRESPONDING Phrase

If the CORRESPONDING phrase 1is used, selected items within
identifier~1 are SUBTRACTed from, and the result stored in, the
corresponding items in identifier—-2. Data items referenced by the
CORRESPONDING phrase must adhere to the following rules:

A data item in identifier—1 and a data item in identifier-2
must not be designated by the key word FILLER and must not
have the same data—-name and the same qualifiers up to, but not
including, identifier—1 and identifier-2.

Both of the data items must be elementary numeric data items.

The description of identifier—-1 and identifier-2 must not
contain level-numbers &6, 77 or 88 or the USAGE IS INDEX
clavse.

A data item that is subordinate to identifier-1 or
identifier—-2 and contains a REDEFINES, RENAMES, OCCURS or
USAGE IS INDEX clause is ignored, as well as those data items
subordinate to the data item that contains the REDEFINES,
OCCURS, or USAGE IS INDEX clause. However, identifier—-1 and
identifier-2 may have REDEFINES or OQCCURS <clauses ot be
subordinate to data items with REDEFINES or OCCURS clauses.

CORR is an abbreviation for CORRESPONDING.

PAGE 220




SUBTRACT EXAMPLES

SUBTRACT TAXES FROM INCOME.
SUBTRACT 1 FROM TALLY GIVING TALLY-1.
SUBTRACT 2. 68, INTEREST, PENALTY

FROM PRINCIPAL ROUNDED
ON SIZE ERROR GO TO ERROR-HANDLER.

PAGE 221




The UNLOCK Statement

The UNLOCK statement makes available to other programs the most
recently accessed record in a file that was read and locked.

FORMAT

UNLOCK file—-name RECORD.

Note: The UNLOCK statement is nonstandard, but provides for
compatibility with existing programs written for
environments that allow multiple programs to concurrently
update a data file. For systems that do not provide ¢this
capability, +the UNLOCK statement will not affect execution
except as described below.

The file associated with the file-name must be open in the I-0
mode.

I#f no record in the file is 1locked, execution of an UNLOCK
statement causes no action to bhe taken. If a record in the file is
locked (unavailable to other programs), the 1last record ¢to be
locked 1is then made available to any other program upon execution
of the UNLOCK statement.

The current record pointer is not atfected by the execution of the
UNLOCK statement. The FILE STATUS data item associated with the
file, if one exists, is vpdated.

The UNLOCK statement may not be used to unlock records locked by
other programs.

Note: Records that are read and locked are auvtomatically wunlocked

by any subsequent operation on that file from the same
program.

PAGE 222




The WRITE Statement (Sequential 1/0)

The WRITE statement releases a logical record for an output file.
It can also be wused for vertical positioning of lines within a
logical page.

FORMAT

WRITE record—-name L[FROM identifier—11]

——— —— ——— oo ran o

L{BEFORE)} ADVANCING {{identifier-2) [LINE 1J}1]

{AFTER » {{integer > CLINES1Y

{ PAGE >

Record—name and identifier—~1 must not reference the same storage
area.

The record-name is the name of a logical record in the File
Section of the Data Division and may be qualified.

When identifier—-2 is used in the ADVANCING phrase, it must be the
name of an elementary integer data item.

Integer or the value of the data item referenced by identifier-2
may be zero.

The associated file must be open in the OUTPUT or EXTEND mode at
the time of the execution of this statement.

The logical record released by the execution of the WRITE
statement is no longer available in the record area.

Upon completion of a WRITE statement, the information in the area
referenced by identifier—1 is available even +though the
information in the area referenced by record-name may not be
available.

The current record pointer is unaffected by the execution of a
WRITE statement.

The execution of the WRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated.

The maximum record size for a file is established at the time the
file is created and must not subsequently be changed.

PAGE 223




The number of character positions on a mass storage device
required to store a 1logical record in a file may or may not be
equal to the number of character positions defined by the 1logical
description of that record in the program.

The execution of the WRITE statement releases a logical record to
the operating system. The contents of the record area are not
changed.

When an attempt is made to write beyond the externally defined
boundaries of a sequential file, an exception condition exists.
The following action takes place:

The wvalue of the FILE 8STATUS data item, if any, of the
associated file is set to a wvalue indicating a boundary
violation.

If a USE AFTER STANDARD EXCEPTION declarative is explicitly or
implicitly specified for the file, that declarative procedure
will then be executed.

I+ a USE AFTER STANDARD EXCEPTION declarative is not

explicitly or implicitly specified for the file, the result is
undefined.

The FROM Phrase

The results of the execution of the WRITE statement with the FROM
phrase is equivalent to the execution of the statement

MOVE identifier—~1 TO record-name

according to the rules specified for the MOVE statement, followed
by the same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the

implicit MOVE statement have no effect on the execution of this
WRITE statement.

PAGE 224




The

ADVANCING Phrase

The
each

ADVANCING phrase allows control of the vertical positioning of
line on a representation of a printed page. If the ADVANCING

phrase is not used, avtomatic advancing will be provided by the

comp

iler to act as if the user had specified AFTER ADVANCING 1

LINE. If the ADVANCING phrase is used, advancing is provided as

foll

The
the

ouws:

I# identifier—-2 1is specified, the representation of the
printed page is advanced the number of lines equal to the
current value associated with identifier-2.

I+ integer 1is specified, the representation of the printed
page is advanced the number of lines equal +to the value of
integer.

If the BEFORE phrase is used, the line is presented before the
representation of the printed page is advanced

I+ the AFTER phrase is used, the line is presented after the
representation of the printed page is advanced.

I#f PAGE is specified, the record is presented on the 1logical
page before or after (depending on the phrase used) the device
is repositioned to the next logical page.

ADVANCING phrase is valid only if the device—type assigned to
£ile is PRINT.

PAGE 225




THE WRITE STATEMENT (Relative and Indexed I-0)

The WRITE statement releases a logical record for an output or
input-output file.

FORMAT

WRITE record—-name LFROM identifier]

[; INVALID KEY imperative-statement]

Record-name and identifier must not reference the same storage
area.

The record-name is the name of a logical record in the File
Section of the Data Division and may be qualified.

The INVALID KEY phrase must be specified if an applicable USE
procedure is not specified for the associated file.

The associated file must be open in the QUTPUT or I-0 mode at the
time of the execution of this statement.

The 1logical record released by <the execution of the WRITE
statement is no longer available in the record area.

The current record pointer is unaffected by the execution of a
WRITE statement.

The execution of the WRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated.

The maximum record size for a file is established at the time the
file is created and must not subsequently be changed.

The number of character positions on a mass storage device
required to store a logical record in a file may or may not be
equal to the number of character positions defined by the logical
description of that record in the program.

The execution of the WRITE statement releases a logical record to
the operating system.

PAGE 226




When a relative file is opened in the output mode, records may be
placed into the file by one of the following:

If the access mode is sequential, the WRITE statement will
cause a record to be released to the System. The first record
will have a relative record number of one (1) and subsequent
records released will have relative record numbers of 2, 3, 4,

I+ the RELATIVE KEY data item has been specified in the
file control entry for the associated file, the relative
record number of the record just released will be placed into
the RELATIVE KEY data item by the System during execution of
the WRITE statement.

I+ the access mode is rtandom or dynamic, prior to the
execution of the WRITE statement the value of the RELATIVE KEY
data item must be initialized in the program with the relative
record number to be associated with the record in the record
area. That record is then released to the System by execution
of the WRITE statement.

When a relative file is opened in the I-0 mode and the access mode
is random or dynamic, records are to be inserted in the associated
file. The value of the RELATIVE KEY data item must be initialized
by the program with the relative record number to be associated
with the record . in the record area. Execution of a WRITE
statement then causes the contents of the record area to be
released to the System.

For an indexed file, the data item specified as the prime record
key must be set by the program to the desired value prior to the
execution of the WRITE statement. Records may be placed into the
file by one of the following:

I+ the access mode is sequential, records must be released to
the System in ascending order of prime record key values.

I# the access mode is rtandom or dynamic, records may be
released to the System in any program—specified order.

The FROM Phrase

The results of the execution of the WRITE statement with the FROM
phrase is equivalent to the execution of the statement:

MOVE identifier—1 TO record—-name

according to the rules specified for the MOVE statement, followed
by the same WRITE statement without the FROM phrase.

PAGE 227




The contents of the record area prior to the execution of the
implicit MOVE statement have no effect on the execution of this
WRITE statement.

The INVALID KEY Phrase

The INVALID KEY condition exists under the following
circumstances:

When the access mode is sequential for an indexed file opened
in the output mode, and the value of the prime record key is
not greater than the value of the prime record key of the
previous record, or

When an indexed file is opened in the output or I-0 mode, and
the value of the prime record key is equal to the value of a
prime record key of a record already existing in the file, or

When a relative file has random or dynamic access mode and the
RELATIVE KEY data item specifies a record which already exists
in the file, or

When an attempt is made to write beyond the externally defined
boundaries of the file.

When the INVALID KEY condition is recognized the execution of the
WRITE statement is unsuccessful, the contents of the record area
are vunaffected and the FILE STATUS data item, if any, associated
with file—name of the associated file is set to a value indicating
the cause of the condition.

PAGE 228

T~



APPENDIX A

ERROR MESSAGES

PAGE 229




ERROR MESSAGES (Compile Time)

The text of the source program is checked for syntax and semantic
errors as it is scanned. Errors may cause interruption in
scanning. In this case, text is ignored until a recovery point is
found and a resume message is printed. Recovery points are chosen
to minimize the amount of wunanalyzed text without producing
irrelevant error messages. In any case the constructs at fault are
undermarked and error messages listed when the source line is
printed. The error message includes either E’s or W’s indicating
errTor or warning. For example:

004030 02 STOCK PIC 9(146)PPP COMPUTATIONAL.
%
###%# 1IPICTURE #E#E#E*E#ExE#E#E#E#E#E#E#E#E*E#E#E#EH#E

indicates a semantic number size error but

005040 02 PART PIC X(4BX(5) SYNC.

¢ ;3
#ekE 1)SYNTAX #E#ERE#ERE#E#E#E#EXEXE#E*E#E#E#E#E*E#E#E
#xkek 2)5CAN RESUME  sWaWsWseWilWaelaeWseeldeWelWeWeWee el

indicates a syntax error at the first undermark and a recovery to
the second undermark.

The number preceding the error message is the wundermark number,
counting from 1left to right. More than one message may refer to
the same undermark.

Global errors such as undefined paragraph names and illegal
control ¢transfers are listed with the program summary at the end
of the source listing.

Compilation always proceeds to the end of the program. regardless
of the number of errors found. Object code is produced such that
an attempt to execute an erroneous statement will terminate
execution with an appropriate error message.

PAGE 230




COMPILER ERROR MESSAGES

ACCESS CLASH
Nonsequential access given for sequential file.

BLANK WHEN ZERO
BLANK WHEN ZERD <clause given for nonnumeric or group

item.

CLABS
The referenced identifier is not wvalid in a «class
condition.

corPy
COPY statement failed because of permanent error
associated with the undermarked file—name.

CORRESPONDING

The CORRESPONDING phrase cannot be wused with the
referenced identifier.

DATA OVERFLOW
The data area (working-storage and literals) is larger
than 465535 bytes in length.

DATA TYPE
Context does not allow data type of the rTeferenced
identifier.

DEVICE CLASH
Random characteristics given to nonrandom device.

DEVICE TYPE
OPEN or CLOSE mode inconsistent with device tuype.

DOUBLE DECLARATION
Multiple declaration of a file or identifier attribute.

DOUBLE DEFINITION
Multiple definition of an identifier.

DUPLICATE
Warning only. Multiple USE procedure declared for same
function or file.

FILE DECL ERROR
The referenced file-name is SELECTed and has an invalid
or missing file description (FD).

PAGE 231




FILE NAME ERROR
The referenced file-name has an invalid external file
name declaration.

FILE NAME REQUIRED
File name not given as reference in I/0 verb.

FILE RECORD KEY ERROR
The referenced file-name has a RECORD KEY which is
incorrectly qualified or is not defined as a data item
of the category alphanumeric within a record description
entry associated with that file name.

FILE RECORD SIZE ERROR
The referenced file-name has a declared record size
which conflicts with the actual data record descriptions
or is a relative organization file with variable length
records.

FILE RELATIVE KEY ERROR
The referenced file—-name has @ RELATIVE KEY which is
incorrectly qualified, is defined in a record
description associated with that file-name, or is not
defined as an unsigned integer.

FILE STATUS ERROR
The referenced file-name has a status item which is
incorrectly qualified, is not defined in the
WORKING—-STORAGE SECTION, or is not a two-character
alphanumeric item.

FILE TYPE
Access oOrT organization of file conflicts with
undermarked statement.

FILLER LEVEL
A nonelementary FILLER item is declared.

GROUP CLASH
USAGE or VALUE clause of group member conflicts with
same clause for group.

GROUP VALUE CLASH
Warning only. An item subordinate to a group with the
VALUE IS clause is described with the SYNCHRONIZED,
JUSTIFIED, or USAGE (other than USAGE 15 DISPLAY)
clause.

IDENTIFIER

Identifier reference is incorrectly constructed or the
identifier has an invalid or double definition.

PAGE 232




ILLEGAL ALTER
An ALTER statement references an unalterable paragraph
or violates the rules of segmentation.

ILLEGAL PERFORM
A PERFORM statement references undefined or incorrectly
qualified paragraph or the reference violates the rules
of segmentation.

INVALID ID
The referenced identifier was not successfully defined.

INVALID PARAGRAPH
Context does not allow section name.

JUSTIFY
JUSTIFY clause given in conflict with other attributes

KEY REQUIRED
Relative key not declared for random access relative
file or record key not declared for indexed file.

LABEL
Presence or absence of label record conflicts with
device standards.

LEVEL.
Level-number given is invalid either intrinsically or
because of position within a group.

LINKAGE

An identifier in the USING clause of the PROCEDURE title
is not a 1linkage item or a statement references a

linkage item mnot subordinate to an identifier in the
USING clause of the PROCEDURE title.

LITERAL VALUE
Literal value given is incorrect in context.

MOVE
Operands of MOVE verb specify an invalid move.

MUST BE INTEGER
Context requires decimal integer.

MUST BE PROCEDURE
Context requires procedure name either as reference or
definition, or the reference must bhe a nondeclarative
procedure-name.

MUST BE SECTION
Context requires procedure-name to be section.

PAGE 233




NESTING

Il1legal nesting of condition that is not an IF
condition.

NOT IN REDEFINE
VALUE IS clause given in REDEFINES item.

OCCURS

Occurs clause given at invalid level or after three have
been given for the same item.

OCCURS DEPENDING ERROR

The referenced object of a DEPENDING phrase has not been
defined correctly.

ODCCURS-VALUE CLASH
VALUE IS and OCCURS in effect for the same item.

PICTURE
Invalid picture syntax.

PICTURE~-BWZ CLASH
Zero suppression and BLANK WHEN ZERO cannot be in effect
for the same item.

PICTURE-USAGE CLASH

USAGE clause or implied wusage conflicts with usage
implied by picture.

PROCEDURE INDEPENDENCE
PERFORM given for procedures in independent segments not
in the current segment.

PROGRAM OVERFLOW
The instruction area 1is larger than 327467 bytes in
length.

RECORD KEY
Record key declared for other than an indexed
organization #file or a START statement KEY phrase
references a data item not aligned on the declared key’s
leftmost byte.

RECORD REQUIRED
Cantext requires record name.

REDEF INES
REDEFINES given within an OCCURS or not redefining the
last allocated item.

PAGE 234




REDEFINES ERROR
The referenced data—name redefines an item which does
not have the same number of character positions and is
not level O1.

REFERENCE INVALID
Reference given is not valid in context.

RELATION
Operands of relation test are incompatible.

RELATIVE KEY
Relative key declared for other than a relative
erganization file or a S8TART statement KEY phrase
references a data item other than the declared key.

RESERVED WORD CONFLICT
A COBOL reserved word or symbol is given where a  wuser
word is required. In the summary this is only a warning
about an ANSI COBOL reserved word that is not an
implemented COBOL reserved word.

SCAN RESUME
Warning only. Scanning was terminated at previous error
message and resumes at undermarked character.

SECTION CLASH
A VALUE IS5 clause appears in ¢the FILE or LINKAGE

section.
SEGMENT
Warning only. Segment number given in an independent
segment is not the same as the current segment or the
number of a new independent segment.
SEPARATOR
Warning only. Redundant punctuation or a separator is
not followed by the required space.
SIGN
SIGN clause given in conflict with usage and picture.
SI1ZE
Warning only. Size of data referenced not correct ¢for
context.
SIZE ERROR
Declared size of record conflicts with present
reference.

PAGE 235




SUBSCRIPT
Incorrect number of subscripts or indices for a

reference.
SYNC

Synchronized clause given for a group item.
SYNTAX

Incorrect character or reserved word given for context.
UNDEF INED

File referenced in FD entry was not defined.

UNDEFINED DECLARATIVE PROCEDURE
A declarative statement references a procedure not
defined within the DECLARATIVES.

UNDEF INED PROCEDURE
A 60 TO statement references an undefined or incorrectly
qualified paragraph.

USE REQUIRED
A DECLARATIVES section must begin with a USE statement.

USING COUNT
Warning only. The item count in the USING list of a CALL
statement is different from that of the first reference
to the same program name.

VALUE ERROR
Value given in VALUE IS required truncation of nonzero
digits.

VALUE
VALUE IS clause given in conflict with other declared
attributes.

VARIABLE ~&CORD

Warning only. The INTO phrase is not allowed with
variable size records.

PAGE 236

~




APPENDIX B

RESERVED WORDS

PAGE 237




RESERVED WORD LIST

The following is a list of RM/COBOL reserved words where:

# denotes reserved words not reserved in ANSI standard COBOL

+ denotes ANSI
compiler,

COBOL reserved words not reserved by the
Their appearance will generate a warning at the end

#*¥#

of the compilation listing.

denotes system—name.

ACCEPT ALPHABETIC AREA

ACCESS +ALS0 +AREAS

ADD ALTER +ASCENDING
ADVANC ING ALTERNATE ASSIGN
AFTER AND AT

ALL ARE AUTHOR
#BEEP #BL INK BY

BEFORE BLOCK

BLANK +BOTTOM

CALL +CODE-SET COMPUTE
+CANCEL COLLATING CONFIGURATION
+CD +COLUMN CONTAINS
+CF COMMA +CONTROL.

+CH +COMMUNICATION +CONTROLS
CHARACTER CoMP #CONVERT
CHARACTERS #*COMP~1 COPY
+CLOCK-UNITS #*COMP-3 CORR

CLOSE COMPUTATIONAL CORRESPONDING
+COBOL. #COMPUTATIONAL-1 +COUNT

+CODE #COMPUTATIONAL -3 CURRENCY
DATA +DEBUG-SUB-1 +DESCENDING
DATE +DEBUG~SUB~-2 +DESTINATION
+DATE-COMPILED +DEBUG-SUB-3 +DETAIL
DATE-WRITTEN +DEBUGGING +DISABLE

DAY DECIMAL-POINT DISPLAY

+DE DECLARATIVES DIVIDE
+DEBUG—-CONTENTS DELLETE DIVISION
+DEBUG~ITEM +DELIMITED DOWN
+DEBUG-LINE +DEL. IMITER DUPLICATES
+DEBUG~NAME DEPENDING DYNAMIC

PAGE 238




#ECHO
+EGI
ELSE
+EMI
+ENABL.E
END

FD
FILE
FILE-CONTROL

+GENERATE
GIVING

+HEADING
#HIGH

I-0
I-0-CONTROL
IDENTIFICATION
IF

IN

INDEX

JUST

KEY

LABEL
+LAST
LEADING
LEFT
+LENGTH
LESS

MEMORY
+MERGE
+MESSAGE

NATIVE
+NEGATIVE
NEXT

+END-OF -PAGE
+ENTER
ENVIRONMENT
+EOP

EQUAL
#ERASE

FILLER
+F INAL.
FIRST

60
GREATER

HIGH~VALUE
HIGH~-VALUES

INDEXED
+INDICATE
INITIAL
+INITIATE
INPUT
INPUT-OUTPUT

JUSTIFIED

+LIMIT

+LIMITS

+L INAGE

+L INAGE-COUNTER
LINE
+LINE~-COUNTER

MODE
MODULES
MOVE

NO
NOT
+NUMBER

PAGE 23%

ERROR
+ESI
+EVERY

EXCEPTION

EXIT

EXTEND

+FOOTING
FOR
FROM

+GROUP

INSPECT
INSTALLATION
INTO

INVALID

I8

LINES
LINKAGE
LOCK

LOW
LOW-VALUE
LOW~-VALUES

+MULTIPLE
MULTIPLY

NUMERIC




OBJECT-COMPUTER

OCCURS
OF
OFF

PAGE
+PAGE~COUNTER
PERFORM
+PF
+PH
PIC
PICTURE

+QUEUE

RANDOM
+RD

READ
+RECEIVE
RECORD
RECORDS
REDEF INES
REEL
+REFERENCES
RELATIVE
+RELEASE

SAME
+8D
+SEARCH
SECTION
SECURITY
+SEGMENT
+SEGMENT-LIMIT
SELECT
+SEND
SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL.
SET
SIGN

OMITTED

ON

OPEN
+0PTIONAL

+PLUS
+POINTER
POSITION
+POSITIVE
#PRINT
+PRINTING
PROCEDURE

QUOTE

+REMAINDER
+REMOVAL
RENAMES
REPLACING
+REPORT
+REPORTING
+REPORTS
+RERUN
+RESERVE
+RESET
+RETURN

SI1ZE
+SORT
+SORT-MERGE
+SOURCE
SOURCE-COMPUTER
SPACE

SPACES

SPEC IAL~-NAMES
STANDARD
STANDARD-1
START

STATUS

STOP

+STRING
+SUB~-QUEUE-1

PAGE 240

OR

ORGANIZATION

OUTPUT
+0OVERFL.OW

+PROCEDURES
PROCEED
PROGRAM
PROGRAM-ID

#PROMPT

QUOTES

#REVERSE

+REVERSED
REWIND
REWRITE

+RF

+RH
RIGHT
ROUNDED
RUN

+SUB-QUEUE-2
+8UB-QUEVE-3
SUBTRACT
+SUM
+SUPPRESS
##SWITCH-1
##SWITCH-2

’

4

##SWITCH-8
+SYMBOL.IC
SYNC
SYNCHRONIZED




#TAB
+TABLE
TALLYING
+TAPE
+TERMINAL
+TERMINATE

UNIT
#UNLOCK
+UNSTRING

VALUE

WHEN
WITH

ZERO

w1+

+TEXT
THAN
THROUGH
THRU
TIME
TIMES

UNTIL
upP
+UPON

VALUES

WORDS

WORKING—STORAGE

ZEROES

PAGE 241

TO
+TOP
TRAILING
+TYPE

USAGE
USE
USING

VARYING

WRITE

ZEROS




APPENDIX C

GLOSSARY

PAGE 242




GLOSSARY

The terms in this appendix are defined in accordance with their
meaning as used in this document describing COBOL and may not have
the same meaning for other languages.

These definitions are also intended to be either reference
material or introductory material to be reviewed prior to reading
the detailed 1language specifications. For this reason, these
definitions are, in most instances, brief and do not include
detailed syntactical rules.

Access Mode:
The manner in which records are to be operated upon within a file.

Actual Decimal Point:

The physical representation, wusing either of the decimal point
characters period (. ) or comma (,), of the decimal point position
in a data item.

Alphabet—Name:

A vuser—~defined word, in the SPECIAL-NAMES paragraph of the
Environment Division, that assigns a name to a specific character
set and/or collating sequence.

Alphabetic Character:

A character that belongs to the following set of letters: A, B, C,
D. E: F:. 6 H, I, Jo K, L, M, N, O, P, G, R, 8 T, U V. W X, Y,
Z, and the space.

Alphanumeric Character:
Any character in the computer’s character set.

Alternate Record Key:
A key, other than the prime record key, whose contents identify a
record within an indexed file.

Arithmetic Expression:

An arithmetic expression can be an identifier or a numeric
elementary item, a numeric literal, such identifiers and litersals
separated by arithmetic operators, two arithmetic expressions
separated by an arithmetic operator, or an arithmetic expression
enclosed in parentheses.

PAGE 243




Arithmetic Operator:
A single character that belongs to the following set:

Character Meaning
+ addition
- subtraction
* multiplication
/ division

Ascending Key:

A key upon the values of which data is ordered starting with the
lowest value of key wp to the highest value of key in accordance
with the rules for comparing data items.

Assumed Decimal Point;

A decimal point position which does not involve the existence of
an actual character in a8 data item. The assumed decimal point has
logical meaning but no physical representation.

At End Condition:
A condition caused during the execution of a READ statement for a
sequentially accessed file.

Block:

A physical unit of data that is normally composed of one or more
logical records. For mass storage files, a block may contain a
portion of a logical record. The size of a block has no direct
relationship to <the size of the file within which the block is
contained or to the size of the logical record(s) that are either
continued within the black or that overlap the block. The term is
synonymous with physical record.

Called Program:
A program which is the object of a CALL statement combined at
object time with the calling program to produce a run unit.

Calling Program:
A program which executes a CALL to another program.

Character:
The basic indivisible unit of the language.

PAGE 244




Character Position:

A character position is the amount of physical storage required to
store a single standard data format character described as USAGE
is DISPLAY (one byte).

Character-String:
A sequence of contiguous characters which form a COBOL word, a
literal, a PICTURE character-string, or a comment-entry.

Class Condition:
The proposition, for which a truth value can be determined, that
the content of an item is wholly alphabetic or is wholly numeric.

Clause:

A clause is an ordered set of consecutive COBOL character—strings
whose purpose is to specify an attribute of an entry.

COBOL Character Set:

The complete COBOL character set consists of the 51 characters
listed below.

Character Meaning
0,.1,....9 digit
A, B, s Z letter

space (blank)

plus sign

minus sign (hyphen)
asterisk

stroke (virgule, slash)
equal sign

currency sign

comma (decimal point)
semicolon

period (decimal point)
quotation mark

left parenthesis

right parenthesis
greater than symbol
less than symbol

e @k D+

NN e~

COBOL Word. (See Word)

Collating Sequence:
The sequence in which the characters that are acceptable in a
computer are ordered for purposes of comparing.

PAGE 245




Column:
A character position within a print line. The columns are numbered
from 1, by 1, starting at the leftmost character position of the

print line and extending to the rightmost position of the print
line.

Combined Condition:
A condition that is the result of connecting two or more
conditions with the ‘AND’ or the ‘OR’ logical operator.

Comment-Entry:
An entry in the Identification Division that may be any
combination of characters from the computer character set.

Comment Line:

A source program line represented by an asterisk in the indicator
area of the line and any characters from the computer’s character
set in area A and area B of that line. The comment line serves
only for documentation in a program. A special form of comment
line represented by a stroke (/) in the indicator area of the line
and any characters from the computer’s character set in area A and
area B of that 1line causes page ejection prior to printing the
comment,

Compile-Time:
The time at which a COBOL source program is translated,. by a COBOL
compiler, to a COBOL object program.

Compiler Directing Statement:
A statement, beginning with a compiler directing verb, that causes
the compiler to take a specific action during compilation.

Complex Condition:
A condition in which one or more logical aperators act upon one or
more conditions.

Computer~Name:
A system—name that identifies the computer upon which the program
is to be compiled or run (commentary only).

PAGE 246




.

Condition:

A status of a program at execution time for which a truth valve
can be determined. Where the term ‘condition’ (condition-i,
condition-2, ...) appears in these language specifications in or
in reference to ‘condition’ (condition—1, condition-2, ...) of a
general format, it is a conditional expression consisting of a
simple condition, optionally parenthesized, consisting of the
syntactically correct combination of simple conditions, logical
operators, and parentheses, for which a truth wvalue can be
determined.

Condition—Name:

A user—-defined word assigned to a specific value, set of values,
or range of values, within the complete set of values that a
conditional variable may possess; or the vuser—defined word
assigned to a status of a system software switch.

Condition—-Name Condition:

The proposition, for which a truth value can be determined, that
the wvalue of a conditional variable is a member of the set of
values attributed to & condition—name associated with the
conditional variable.

Conditional Expression:
A simple condition or a complex condition specified in an IF or
PERFORM statement.

Conditional Statement:

A conditional statement specifies that the <¢truth value of a
condition is to be determined and that the subsequent action of
the object program is dependent on this truth valvue.

Conditional Variable:
A data item one or more values of which has a condition name
assigned to it.

Configuration Section:
A section of the Environment Division that describes overall
specifications of source and object computers.

PAGE 247




Connective:
A reserved word that is used to:

Associate a data—-name, paragraph-name or condition—-name with
its qualifier.

Link two or more operands written in a series.

Form conditions (logical connectives).

Contiguous Items:

Items that are described by consecutive entries in the Data
Division, and that bear a definite hierarchic relationship to each
other.

Counter:

A data item used for storing numbers or number representations in
a manner that permits these numbers to be increased or decreased
by the value of another number, or to be changed or reset to zero
or to an arbitrary positive or negative value.

Currency Sign:
The character ‘#‘ of the COBOL character set.

Currency Symbol:

The character defined by the CURRENCY &SIGN clause in the
SPECIAL-NAMES paragraph. If no CURRENCY SIGN clause is present in
a COBOL source program. the currency symbol is identical to the
currency sign.

Current Record:
The record which is available in the rTecord area associated with
the file.

Current Record Pointer:
A conceptual entity that is wused in the selection of the next
record.

Data Clause:

A ctlause that appears in a data description entry in the Data
Division and provides information describing a particular
attribute of a data item.

PAGE 248




Data Description Entry:

An entry 'in the Data Description that is composed of a
level-number +followed by a data-name, if required, and then
followed by a set of data clauses, as required.

Data Item:
A character or a set of contiguous characters (excluding in either
case literals) defined as a unit of data by the COBOL program.

Data-Name:

A user—defined word that names a data item described in a data
description entry in the Data Division. When used in the general
formats, ‘data-name’ represents a word which c¢can neither be
subscripted, indexed, nor qualified unless specifically permitted
by the rules for that format.

Debugging Line:
A debugging line is any line with ‘D’ in the indicator area of the
line.

Declaratives:

A set of one or more special purpose sections, written at the
beginning of the Procedure  Division, the first of which is
preceded by the key word DECLARATIVES and the 1last of which is
followed by the key words END DECLARATIVES. A declarative is
composed of a section header, followed by a USE compiler directing
sentence, followed by a set of zero, one or more associated
paragraphs.

Declarative—Sentence:
A compiler—directing sentence consisting of a single USE statement
terminated by the separator period

Delimiter:

A character or a sequence of contiguous characters that identify
the end of a string of characters and separates that string of
characters from the following string of characters. A delimiter is
not part of the string of characters that it delimits.

Digit Position:

A digit position is the amount of physical storage required to
store a single digit. This amount may vary depending on the usage
of the data item describing the digit position.

PAGE 249




Division:

A set of zero, one or more sections of paragraphs, called the
division body, that are formed and combined in accordance with a
specific set of rules. There are four (4) divisions in a COBOL
program: Identification, Environment, Data, and Procedure.

Division Header:
A combination of words followed by a period and a space that
indicates the beginning of a division. The division headers are:

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION [USING data-name-1 [data-name-21... 1.

Dynamic Access:

An access mode in which specific logical records can be obtained
from or placed into a mass storage file in a non sequential manner
(see Random Access) and obtained from a file in a sequential
manner (see Sequential Access), during the scope of the same OPEN
statement.

Editing Character:
A single character or fixed two-character combination belonging to
the following set:

Character Meaning

B e e T Y T e

space

zero

plus

minus

credit

debit

IeT0 suppress

check protect

currency sign

comma (decimal point)
period (decimal point)
stroke (virgule, slash)

ST wENUDOO I $0OW
-~}

N -

Elementary Item:
A data item that is described as not being further logically
subdivided.

End of Procedure Division:
The physical position in a COBOL source program after which no
further procedures appear.

PAGE 250




Entry:

Any descriptive set of consecutive clauses terminated by a period
and written in the Identification Division, Environment Division,
or Data Division of a COBOL source program.

Environment Clause:
A clause that appears as part of an Environment Division entry.

Execution Time. (See Object Time)

Extend Mode:

The state of a file after execution of an OPEN statement, with the
EXTEND phrase specified. for that file and before the execution o#f
a CLOSE statement for that file.

Figurative Constant:
A compiler generated value referenced through the use of certain
reserved words.

File:
A collection of records.

File Clause:
A clavse that appears as part of the file description (FD) entries
in the Data Division.

FILE-CONTROL:
The name of an Environment Division paragraph in which the data
files for a given source program are declared.

File Description Entry:

An entry in the File Section of the Data Division that is composed
of the level indicator FD, followed by a file-name, and then
followed by a set of file clauses as required.

File—Name:
A user—defined word that names a file described in a file
description entry within the File Section of the Data Division.

File Organization:
The permanent logical file structure established at the time that
a file is created.

PAGE 251




File Section:
The section of the Data Division that contains file description
entries together with their associated record descriptions.

Format:
A specific arrangement of a set of data.

Group Item:
A named contiguous set of elementary or group items.

I-0~CONTROL.:
The name of an Environment Division paragraph in which sharing of
same areas by several data files is specified.

I-0-Mode:

The state of a file after execution of an OPEN statement, with the
I-0 phrase specified, for that file and before the execution of a
CLOSE statement for that file.

Identifier:

A data-name.:. followed as required. by the syntactically correct
combination of qualifiers, subscripts, and indices necessary to
make unique reference to a data item.

Imperative Statement:

A statement that begins with an imperative verb and specifies an
unconditional action to be taken. An imperative statement may
consist of a sequence of imperative statements.

Index:
A data icem, the contents of which represent the identification of
a particular element in a table.

Index Data Item:
A data item in which the value associated with an index—name can
be stored.

Index—Name:
A user—defined word that names an index associated with a specific
table.

PAGE 252




Indexed Data-Name:
An identifier that is composed of a data-name, followed by one or
more index—names enclosed in parentheses.

Indexed File:
A file with indexed organization.

Indexed Organization:

The permanent logical file structure in which each record is
identified by the value of one fixed length key within that
record.

Input File:
A file that is opened in the input mode.

Input Mode:

The state of a file after execution of an OPEN statement, with the
INPUT phrase specified, for that file and before the execution of
a CLOSE statement for that file.

Input-Output File:
A file that is opened in the I-0 mode.

Input-Output Section:

The section of the Environment Division that names the files and
the external media required by an object program and which
provides information required for transmission and handling of
data during execution of the object program.

Integer:

A numeric literal or a numeric data item that does not include any
character positions to the right of the assumed decimal point.
Where the term ‘integer’ appears in general formats, integer must
not be a numeric data item» and must not be signed, nor zero,
unless explicitly allowed by the rules of that format.

Invalid Key Condition:

A condition, at object time, caused when a specific value of the
key associated with an indexed or relative file is determined to
be invalid.

Key:
A data item which identifies the location of a record.

PAGE 253




Key Word:
A reserved word whose presence is required when the format in
which the word appears is used in a source program.

Level Indicator:
Two alphabetic characters that identify a specitic type of file or
a position in hierarchy.

Level—Number:

A user—defined word which indicates the position of a data item in
the hierarchical structure of a logical record or which indicates
special properties of a data description entry. A level-number is
expressed as a one— or two-digit number. Level-numbers in the
range 1 through 49 indicate the position of a data item in the
hierarchical structure of a logical record. Level-numbers in the
range 1 through @ may be written either as a single digit or as a
zero followed by a significant digit. Level-numbers 77 and 88
identify special properties of a data description entry.

Library—Name: ,
A user—defined word that names a COBOL library that is to be used
by the compiler for a given source program compilation.

LLinkage Section:

The section in the Data Division of the called program that
describes the data items available from the calling program. These
data items may be referred to by both the calling and called
program.

Literal:
A character—string whose value is implied by the ordered set of
characters comprising the string.

Logical Operator:

One of the reserved words AND, OR, or NOT. In the formation of a
condition, both or neither of AND and OR can be used as logical
connectives., NOT can be used for logical negation.

Mass Storage:
A storage medium on which data may be organized and maintained in
both a sequential and nonsequential manner.

PAGE 254




Mass Storage File:
A collection of records that is assigned to a mass storage medium.

Mnemonic—-Name:
A user—defined word that is associated in the Environment Division
with a specified system—name.

Native Character Set:
The character set associated with the COBOL Compiler (ASCII).

Native Collating Sequence:
The collating sequence associated with the native character set.

Negated Combined Condition:
The ‘NOT’ logical operator immediately followed by a parenthesized
combined condition.

Negated Simple Condition:
The ‘NOT’ 1logical operator immediately followed by a simple
condition.

Next Executable Sentence:
The next sentence to which control will be transferred after
execution of the current statement is complete.

Next Executable Statement:
The next statement to which control will be transferred after
execution of the current statement is complete.

Next Record:
The record which logically follows the current record of a file.

Noncontiguous Items:

Elementary data items, in the MWorking-Btorage and Linkage
Sections, which bear no hierarchic relationship to other data
items.

Nonnumeric Item:

A data item whose description permits its contents to be composed
of any combination of characters taken from the computer’s
character set. Certain categories of nonnumeric items may be
formed from more restricted character sets.

PAGE 2595




Nonnumeric Literal:

A character-string bounded by quotation marks. The string of
characters may include any character in the computer’s character
set. To represent a single quotation mark character within a
nonnumeric literal, two contiguous quotation marks must be used.

Numeric Character:
A character that belongs to the following set of digits: 0, 1, 2,
3: 4, 5, 6, 7, 8 9

Numeric Item:

A data item whose description restricts its contents to a value
represented by characters chosen from the digits ‘0’ through ‘97;
if signed, the item may also contain a '+, ‘-‘, or other
representation of an operational sign.

Numeric Literal:

A literal composed of one or more numeric characters that also may
contain either a decimal point, or an algebraic sign, or both. The
decimal point must not be the rightmost character. The algebraic
sign, if present, must be the leftmost character.

OBJECT—-COMPUTER:

The name of an Environment Division paragraph in which the
computer environment, within which the object program is executed,
is described.

Db ject of Entry:
A set of operands and reserved words, within a Data Division
entry, that immediately follows the subject of the entry.

Object Program:

A set or group of executable instructions and other material
designed to interact with data to provide problem solutions. In
this context, an object program is generally the result of the
operation of a COBOL compiler on a8 source program. Where there is
no danger of ambiguity, the word ‘program’ alone may be wused in
place of the phrase ‘object program’.

Ob ject Time:
The time at which an object program is executed.

PAGE 256




Open Mode:

The state of a file after execution of an OPEN statement for that
file and before the execution of a CLOSE statement for that file.
The particular open mode is specified in the OPEN statement as
either INPUT, OUTPUT, I-0, or EXTEND.

Occurrence Number:
The relative data item number in a table.

Operand:

Whereas the general definition of operand is ‘that component which
is operated upon’, for the purposes of this publication, any
lowercase word (or words) that appears in a statement or entry
format may be considered to be an operand and. as such, is an
implied reference to the data indicated by the operand.

Operational Sign:

An algebraic sign, associated with a numeric data item or a
numeric literal, to indicate whether its value 1is positive or
negative.

Optional Word:

A reserved word that is included in a specific format only to
improve the readability of the language and whose presence is
optional to the user when the format in which the word appears is
used in a source program.

Output File:
A file that is opened in either the output mode or extend mode.

Output Mode:

The state of a file after execution of an OPEN statement, with the
OUTPUT or EXTEND phrase specified, for that file and before the
execution of a CLOSE statement for that file,

Paragraph:
In the Procedure Division, a paragraph-name followed by a period
and a space and by zero, one, or more sentences. In the

Identification and Environment Divisions, a paragraph header
followed by zero, one, or more entries.

PAGE 257




Paragraph Header:
A reserved word., followed by a period and a space that indicates

the beginning of a paragraph in the Identification and Environment
Divisions. The permissible paragraph headers are:

In the Identification Division:

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
SECURITY.

In the Environment Division:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL~NAMES.
FILE-CONTROL.
I-0~-CONTROL.

Paragraph—-Name:
A user—-defined word that identifies and begins a paragraph in the
Procedure Division.

Phrase:

A phrase is an ordered set of one or more consecutive COBOL
character—strings that . form a portion of a COBOL procedural
statement or of a COBOL clause.

Physical Record. (See Block)

Prime Record Key:
A key whose contents uniquely identify a record within an indexed
tile.

Procedure:

A paragraph or group of logically successive paragraphs:, or a
section or group of logically successive sections, within the
Procedure Division.

Procedure—Name:

A vuser—defined word which is used to name a paragraph or section
in the Procedure Division. It consists of a paragraph-name (which
may be qualified), or a section—name.

PAGE 258




Program—Name:
A user~defined word that identifies a COBOL source program.

Punctuation Character:
A character that belongs to the following set:

Character Meaning

: comma

i semicolon

. period

" quotation mark

( left parenthesis

) right parenthesis
space

equal sign

Qualified Data~-Name:
An identifier that is composed of a data-name followed by one or
more sets of either of the connectives OF and IN followed by a
data-name qualifier.

Qualifier:

A data-name whiech is wused in a reference together with another
data name at a lower level in the same hierarchy. A section—name
which 1is wused in a reference together with a paragraph—name
specified in that section.

Random Access:

An access mode in which the program—specified value of a key data
item identifies the logical record that is obtained from, deleted
from, or placed into a relative or indexed file.

Record Area:
A storage area allocated for the purpose of processing the record
described in a record description entry in the File Section.

Record Description. (See Record Description Entry)

Record Description Entry:
The total set of data description entries associated with a
particular record.

PAGE 259




Record Key:

The prime record key whose contents uniquely identify a record
within an indexed file.

Record—-Name:

A user—defined word that names a record described in a record
description entry in the Data Division.

Reference Format:

A format that provides a standard method for describing COBOL
source programs.

Relation. (See Relational Operator)

Relation Character:
A character that belongs to the following set:

Character Meaning
> greater than
< less than

equal to

Relation Condition:

The proposition, for which a truth value can be determined, that
the value of a data item has a specific relationship to the valve
of another data item. (See Relational Operator)

PAGE 240




Relational Operator:

A reserved word, a relation character, a group of consecutive
reserved words, or a group of consecutive reserved words and
relation characters uvsed in the construction of a relation
condition. The permissible operators and their meanings are:

Relational Operator Meaning

IS [NOT] GREATER THAN Greater than or not
I8 CNOTI > greater than

IS [NOT] LESS THAN Less than or not

I8 [NOT] < less than

I8 [NOT2 EQUAL TO Equal to or not

IS [NOT] = equal to

Relative File:
A file with relative organization.

Relative WKey:
A key whose contents identifies a logical record in a relative
file.

Relative Organization:

The permanent logical +file structure in which each record is
uniquely identified by an integer value greater than zero, which
specifies the record’s logical ordinal position in the file.

Reserved Word:

A COBOL word specified in the list of words which may be used in
COBOL source programs, but which must not appear in the programs
as user—~defined words or system—names.

Run Unit:
A set of one or more object programs which function at object
time, as a unit to provide problem solutions.

Section:

A set of zero:. one, or more paragraphs or entries, called a
section body, the first of which is preceded by a section header.
Each section consists of the section header and the related
section boduy.

PAGE 261




Section Header:

A combination of words folliowed by a period and a space that
indicates the beginning of a section in the Environment, Data and
Procedure Division.

In the Environment and Data Divisions, a section header is
composed of reserved words followed by a period and a space. The
permissible section headers are:

In the Envivonment Division:

CONFIGURATION SECTION.
INPUT-QUTPUT SECTION.

In the Data Division:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

In the Procedure Division, a section header is composed of a
section-name, followed by the reserved word SECTION, followed by a
segment-number (optional), followed by a period and a space.

Section-Name:

A vuvser—-defined word which names a section in the Procedure
Division.

Segment—-Number:

A vuser—defined word which classifies sections in the Procedure
Division for purposes of segmentation. Segment-numbers may contain
only the characters ‘0‘, “17/,..., 2. A segment—number may be
expressed either as a one— or two—-digit number.

Sentence:
A sequence of one or more statements, the last of which is
terminated by a period followed by a space.

Separator:
A punctuation character used to delimit character—-strings.

Sequential Access:

An access mode in which logical records are obtained from or
placed into a file in a consecutive predecessor—to—-successor
logical record sequence determined by the order of records in the
file.

PAGE 262




Sequential File:
A file with sequential organization.

Sequential Organization:

The permanent logical file structure in which & record is
identified by a predecessor-successor relationship established
when the record is placed into the file.

Simple Condition:
Any single condition chosen from the set:

relation condition

class condition
condition—-name condition
switch—-status condition
{simple—-condition)

SOURCE-COMPUTER:

The name of an Environment Division paragraph in which the
computer environment, within which the source program is compiled,
is described.

Source Program:

A syntactically correct set of COBOL statements beginning with an
Identification Division and ending with the end of the Procedure
Division. In contexts where there is no danger of ambiguity, the
word ‘program’ alone may be used in place of the phrase ’‘source
program. ’

PAGE 263




Special Character:
A character that belongs to the following set:

Character Meaning

plus sign

minus sign

asterisk

stroke (virgule, slash)
equal sign

currency sign

comma {(decimal point)
semicolon

period (decimal point)
gquotation mark

left parenthesis

right parenthesis
greater than symbol
less than symbol

.- @k o+

ANV~ ~

Special-Character Word:
A reserved word which is an arithmetic operator or a relation
character.

SPECIAL-NAMES:
The name of an Environment Division paragraph in which
switch-names are related to user~defined words.

Standard Data Format:

The concept used in describing the characteristics of data .in a
COBOL Data Division under the characteristics or properties of the
data are expressed in a form oriented to the appearance of the
data on a printed page of infinite length and breadth, rather than
a form oriented to the manner in which the data is stored
internally in the computer, or on a particular external medium.

Statement:
A syntactically valid combination of words and symbols written in
the Procedure Division beginning with a verb.

Subject of Entry:
An operand or reserved word that appears immediately following the
level indicator or the level-number in a Data Division entry.

Subprogram. (See Called Program)

PAGE 264




Subscript:
An integer whose value identifies a particular element in a table.

Subscripted Data—Name:
An identifier that is composed of a data-name followed by one or
more subscripts enclosed in parentheses.

Switch-Status Condition:
The proposition, for which a truth value can be determined that a
switch, capable of being set to an ‘on’ or ‘off’ status, has been
set to a specific status.

System—Name:
A CDOBOL word which is used to communicate with the operating
environment.

Table:
A set of logically consecutive items of data that are defined in
the Data Division by means of the OCCURS clause.

Table Element:
A data item that belongs to the set of repeated items comprising a
table.

Text-Name:
A file access name that identifies library text.

Truth Valvue:
The representation of the result of the evaluation of a condition
in terms of one of two values:

true
false

Unary Operator:

A plus (+) or a minus (-) sign, which precedes a variable or a
left parenthesis in an arithmetic expression and which has the
effect of multiplying the expression by +1 or -1 respectively.

User—Defined Word:
A COBOL word that must be supplied by the wuser ¢to satisfy the
format of a clause or statement.

PAGE 265




Variable:

A data item whose value may be changed by execution of the object
program. A variable used in an arithmetic expression must be a
numeric elementary item.

Verb:
A word that expresses an action to be taken by a COBOL compiler or
ob ject program.

Word:
A character—string of not more than 30 characters which forms a
user—~defined word, a system-name. or a reserved word.

Working—-Storage Section:

The section of the Data Division that describes working storage
data items, composed either of noncontiguous items or of working
storage records or of both.

77-Level—-Description-Entry:
A data desccription entry that describes a noncontiguous data item
with the level—number 77.

PAGE 266




APPENDIX D

COMPOSITE LANGUAGE SKELETON

PAGE 267




COMPOSITE LANGUAGE SKELETON

This section contains the composite language skeleton of the
American National Standard COBOL. It is intended to display
complete and syntactically correct formats.

For the general formats of the four divisions the leftmost margin
is equivalent to margin A in a COBOL source program. The first
indentation after the leftmost margin is equivalent to margin B in
a COBOL source program,

For the general formats of the verhs and conditions the leftmost
margin indicates the beginning of the format for a new COBOL verb.
The first indentation after the leftmost margin indicates
continvation of the format of the COBOL verb.

The following is a summary of the formats shown on the +following
pages:

- Identification Division general format

- Environment Division general format

= The three formats of the file control entry

-~ Data Division general format

-~ The three formats for a data description entry

-~ The format for a field definition entry

- Procedure Division general format

-~ General format of verbs listed in alphabetical order

- General format for conditions

- Formats for qualification, subscripting. indexing. and
an identifier

-~ General format for a COPY statement

PAGE 248




RM/COBOL LANGUAGE SYNTAX

The RM/COBOL 1language is based wupon the ANSI X3. 23-1974 COBOL
standard. Minor departures from that document are reflected in the
syntax description which follows but are not separately noted.
Semantic rules are not changed.

The description is in a condensed form of the standard COBOL
syntax notation. In some cases separate formats are combined and
general terms are employed for user names.

System—names and implementation restrictions are:

computer—name: User~defined word
program-name: 8~character name
switch—names: SWITCH-1,..., SWITCH-8
device—-types: PRINT

INPUT

QUTPUT

INPUT-OUTPUT

RANDOM

external-file-name: One- to thirty—character name

PAGE 249




IDENTIFICATION DIVISION GENERAL FORMAT

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTH?R. [lcomment—entryl ... 1
CINSTALLATIDN. [Lcomment-entryl ... 1]
[DATE~WRIIZEN. Lcomment—entryl ... 1
[SECURITY. [comment-entryl ... 1]

———— -t m— S

PAGE 270




ENVIRONMENT DIVISION GENERAL FORMAT

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer—name.

OBJECT-COMPUTER. computer—name

[, MEMORY SIZE integer {WORDS 31

e o . gt apias e
ans o e e s g s oo o paag

£, PROGRAM COLLATING SEQUENCE IS alphabet-namel.

[SPECIAL-NAMES. [, switch—-name

{ON STATUS IS condition—-name-~1 [, OFF STATUS IS condition-name—212}1

{0OFF STATUS IS condition—name—-2 [, ON STATUS IS5 condition-name—-113}1

s -~

£, alphabet—-name IS {STANDARD-13}1 ..

ey paite o s Ao puam manm et

L. CURRENCY SIGN IS literal-i]

s oo e (mgep atete S gyt e o

L, DECIMAL-POINT IS COMMA]. 1

PAGE 271




[ INPUT-OQUTPUT SECTION.

FILE-CONTROL..

{file-control-entry} ..

[I-0-CONTROL.

[; SAME AREA FOR file-name-1 [,

PAGE 272

file-name—-21 ...

1...

.12




FILE CONTROL ENTRY GENERAL FORMAT

FORMAT 1

SELECT +file—name

— . goe —

ASSIGN TO device—type {"external-file-name"}
—————— {data-name-1 >

L; ORGANIZATION IS SEQUENTIALIJ

—— oy oo ot o S s wne

L; ACCESS MODE IS SEQUENTIALI]

- e o o o oo oot o At cout s e cpare

[; FILE STATUS IS data—-name-21].

FORMAT 2

SELECT file—name

ASSIGN TO RANDOM, {"external—-file-name®)
{data-name—1 ¥

i ORGANIZATION IS RELATIVE

L; ACCESS MODE IS { SEQUENTIAL [, RELATIVE KEY IS data-name-21} ]

—— - o —— e et e ot cpten o s s G000 - qrint sapnp oot s e v

{{RANDDM b » RELATIVE KEY IS data—name-2 }

-~ — o s onvt s ot i L gysbe S samms s s

{{DYNAMICY >

[; FILE STATUS 1S5 data—-name-31.

- — et aqtte s wame

PAGE 273




FORMAT 3

SELECT file-name

ASSIGN TO RANDOM, {"external—-file-name")}
———————————— {data—-name-1 >

P e S ot et asom Sonry S S vt avors

S e o e ooy S

o g o o g

£{; FILE STATUS IS data-name—41].

PAGE 274




DATA DIVISION GENERAL FORMAT

DATA DIVISION.

(FILE SECTION.

LFD file~name

L; BLOCK CONTAINS (integer-1 TOl integer—-2 {RECORDS 1
{CHARACTERSY}

{; RECORD CONTAINS [integer-3 TOl integer-4 CHARACTERS]

e v s ey s -—

i LABEL {RECORD IS 1} {STANDARD}

—— —— v v B N e ]

B e ] o oo ovten s S sante v

[; VALUE OF LABEL IS nonnumeric—literal-—-11

L; DATA {RECORD IS ) data—-name-1 [, data-name-2]1 ... 1

{RECORDS AREY

[record-description-entryl ... 13 ...

LWORKING-STORAGE SECTION.

L77-1evel—-description-entryl ... 1]
{record—description—entry 1]

ELINKAGE SECTION.

{77-level—-description—entryl ... 131
[record-description—-entry 1

PAGE 2795




DATA DESCRIPTION ENTRY GENERAL FORMAT TN

FORMAT 1

level—number {data—-name—-1>}
{FILLER ¥

£; REDEFINES data-name-2)

e oo o S ovber e aary wose

L; {PICTURE} IS character-stringl

[; [USAGE IS1 {COMPUTATIONA }]

{COMP ¥

{COMPUTATIONAL-1}

oot > ~
{COMPUTATIUONAL-32}
£COMP-3 >
{DISPLAY >
{INDEX >
[; [SIGN IS] TRAILING [SEPARATE CHARACTER] 1]
[; OCCURS {integer—1 TIMES ¥
—————— {integer—1 TO integer-2 TIMES DEPENDING ON data-name-3}
LINDEXED BY index-name-1 [, index-name-231 ...1 1]
~~

PAGE 276




L; {SYNCHRONIZED) CLEFT 1 1

g o

{SYNC > [RIGHT]

— - ot e s ooy s

Li {JUSTIFIEDY RIGHT]

e 0005 aa00n S e avs qusin

L; BLANK WHEN ZERO]

o oo oot o~ oo -

[; VALUE IS literall .

. it o e s

FORMAT 2

66 data—-name—-1; RENAMES data-—-name-2 [{THROUGH> data-name-31].

e e s surn asaia - o e Svven bt s g

FORMAT 3

88 condition—name; <{VALUE IS 3>

{THRU >

[, literal-3 C{THROUGH} literal-4] 1 ...

PAGE 277




PROCEDURE DIVISON GENERAL FORMAT

FORMAT 1

PROCEDURE DIVISION L[USING data-name-1 [.data-name-21 ... ] .

e e an s

- e cagan s v o, s peing S Y s S

{section—name SECTION L[segment-number]. declarative—sentence

- o v Lo it oot v

[paragraph—name. [sentencel ... 1 ... ¥ ...

END DECLARATIVES. 1

{section—-name SECTION [segment—number],

s e it Qs Sosat e

Cparagraph—-name. [sentencel ... 1 ... » ...

END PROGRAM.

FORMAT 2
PROCEDURE DIVISION [USING data-name—-1 [,data-name-21 ... 1 .
{paragraph—-name. [sentencel ... } ...

END PROGRAM.

———— oo e pot oo spos ity

PAGE 278




TN

GENERAL FORMAT FOR VERBS

ACCEPT {identifier—1 [, UNIT {identifier—-23}]

B e

ADD

ADD

e ———— {literal-—-i ¥

L. LINE {identifier-33>] [, POSITION {identifier-4}1]
———— {literal-2 Y | meee——— {literal—-3 >

L, SIZE {identifier-531 [, PROMPT [literal-5]1]
-—=— {literal-4 b it

L, ECHOl [, CONVERT] [, TAB] [, ERASE] [, NO BEEP]

L, {OFF}] [, ON EXCEPTION identifier—&6 imperative statementl). ..

- -y ot oo ————— o g

{DAY 2

{TIMEY}

{identifier—1} [, identifier—-2] ... TO identifier—m
{literal-1 Y L, literal-2 ] —

[; ON SIZE ERROR imperative-statementl

{identifier—13, {identifier-2) [, identifier-3]
€literal-1 ¥ {literal-2 Y [, literal—3 1

GIVING identifier-m [ROUNDED]

- e st s v e - — " 1oin s

B e et

{CORRESPONDINGY) identifier~1 TO identifier-2

— -

{CORR }

[ROUNDED] [; ON SIZE ERROR imperative—statement]

o et e i st s st —_—— . asote Soe meote poem e

PAGE 279

CROUNDED ]




ALTER procedure-name~1 TO [PROCEED TOJ) procedure~name-2

- v o oo o g ot

CALL {identifier—1} LUSING data-name-1 [, data—name-2] ... 1]
~==— {literal-1 ¥ e

CLOSE file-name-1 [{REELY [WITH NO REWIND] 1]

{UNITI

— .

WITH {NO REWINDZX

[, file—name-2 C[{REEL} [WITH NO REWIND1 1 1

P o s g ot oo

{UNITY

— v cote

WITH {NO REWINDY

COMPUTE identifier—1 [ROUNDED1 = arithmetic-expression

e e v ey e s  sts S900s

[i ON SIZE ERROR imperative-statement]

B e L T

DELETE file-name RECORD [; INVALID KEY imperative-statementl]

DISPLAY {{identifier~1) [, UNIT {identifier-2} 1]
——————— {literal-1 > ———— {literal-2 ¥

[, LINE {identifier-3}1L, POSITION {identifier—-43}1
———— {literal-3 } | mme———— {literal-4 >

[, SIZE {identifier-5X1L, BEEPI1L[. ERASE]
-—== {literal-5 > ———— e

L, {HIGH)1L, BLINKIL, REVERSE1} ...

— et mawe w— ———— ot - - oot poran ot . s

{LoW >

PAGE 280




DIVIDE {identifier-1} INTO identifier-2 [ROUNDED]
—————— {literal-1i y ———————

[; DN SIZE ERROR imperative—statement]

DIVIDE {identifier—1} INTO {identifier-2} GIVING identifier-3
—————— {literal-1 } ===- {literal-2 > —e———

[ROUNDED] [; ON SIZE ERROR imperative-statement]

ot satas ootar B0 s s400e ———— e o o o v v

DIVIDE {identifier-1} BY {identifier-2) GIVING identifier—3 [ROUNDED]
—————— {literal-1i Y == {literal-2 } me———— ——————

C; ON SIZE ERROR imperative-statement]

- v ate spam s orary o

EXIT C[PROGRAMI.

60 TO procedure—name-1

-

60 TO procedure—name-1 [, procedure-name-2] ... , procedure-name-n

DEPENDING ON identifier

IF condition; {statement-1 2 {; ELSE statement-2 %

——— o o

{NEXT SENTENCEY} {; ELSE NEXT SENTENCE}

- - s 4 o s i 2% s . s GAO0e Py et

PAGE 281




INSPECT identifier-1

[TALLYING identifier—-2 FOR {{ALL > {identifier-33}
———————— — - {literal-1 3}

{{LEADINGY}

{ CHARACTERS }

[{BEFORE} INITIAL {identifier—4311]
—————— {literal-2 ¥

{AFTER }
[REPLACING {{ALL > {identifier~53) BY {identifier-&)
————————— — {literal-3 } == {literal-4 >
{{LEADINGY} >
{{FIRST 1} ¥
{ CHARACTERS 3

Shat 00" oot o e e e Gt shine somie

C{BEFOREY INITIAL {identifier-7311
—————— {literal-5 }

NOTE: The TALLYING option, the REPLACING option, or both
options must be selected.

PAGE 282




MOVE {identifier—1) TO identifier-2 [, identifier-31..
———— {literal } -

MOVE {CORRESPONDING} identifier-1 TO identifier-2

{CORR ¥

MULTIPLY {identifier—1} BY identifier-2 [ROUNDED]
———————— {literal-1 ) — ——————

L; ON SIZE ERROR imperative-statement]

MULTIPLY {identifier—1) BY {identifier-2} GIVING identifier-3
———————— {literal-1 } ~= {literal—-2 } ——————

[ROUNDED] [; ON SIZE ERROR imperative-statementl

B e lend A s o ooaie et o ot

o ot o b o o stare

———— — o 2042 oot ——— . s oot owtre ooty Sutn

o . g arono ntn s0ms cvane omas

{I-0 file-name-5)[, file—-name-61...

{EXTEND +ile-name-7}L, file-name-81...7F..

PAGE 283




PERFORM procedure-name—1 [{THROUGH} procedure-name—-21]

—— o s o some 0 e s bttt ot s o

{THRU >

PERFORM procedure-name—-1 [{THROUGH} procedure-name-21]

B —— - e Sostt s1ey e e

{THRU >

{identifier—1} TIMES
{literal—1 } —————

PERFORM procedure-name—-1 [{THROUGH) procedure-name-21]

e T s oo e s s v

{THRU ’

UNTIL condition-1

s g s attit ooee s sy o et oo domes o 2ot soa

VARYING {identifier—2) FROM {identifier-3}
——————— {index-name~1} ———-- {index-name-27
{literal—-1 ¥

BY {identifier—4) UNTIL condition-1
-— {literal-3 ¥y eer———

[AFTER {identifier-5) FROM {identifier-&)
————— {index-name-3} ———-— {index—name—4>X
{literal-3 >

BY {identifier-7) UNTIL condition-2
-— {literal-4 } m———

LAFTER {identifier~8} FROM {identifier—9}
————— {index-name—-5} ~——- {index—~name—6}
{literal-5 ¥

BY {identifier~10) UNTIL condition-3 1 1
-= {literal-& } ———

PAGE 284




READ file-name RECORD [INTO identifier]

L; AT END imperative-statement]

READ file—name [NEXT] RECORD C[WITH NO LOCK] CINTO identifierl

o o —— v s e —— e ot o ot — crars et ot

Li AT END imperative-statement]

READ file-name RECORD [WITH NO LOCK3 LINTO identifierl

— . o -t et tmm o P

L; KEY IS data—-namel

-

L; INVALID KEY imperative-statement]

oy s o s ton

s s o e g qate o cotte canan oo

[; INVALID KEY imperative—statement]

SET {identifier—1 [,identifier~2] ...} TO {identifier-3}
—-—= {index—name~1 [, index—-name~21 ...} -~ {index-name-3}
{integer—1 ¥

SET index—name—4 [, index-name-5) ... {UP BY 3} {identifier—-4}
- —-— {integer-2 >
{DOWN BYY}

PAGE 285




START file—name [KEY {IS EQUAL TO > data-namel

oo wastn o guame - —— s o

{I8 = >
{IS GREATER THAN 2}

——— - — o o

{18 > ¥
{IS NOT LESS THANY}

{IS NOT < >

[i INVALID KEY imperative-—statement]

STOP {RUN ¥

{literal 1}

SUBTRACT {identifier~1} [, identifier-21 ... FROM identifier—m
———————— {literal—1 Y L, literal-2 ] i n e

CROUNDED] [; ON SIZE ERROR imperative—statement]

oy b ovtie qam s s b0 o —— s st qoo i same oot

SUBTRACT {identifier—~12 [,identifier-21 ... FROM {identifier-m}
———————— {literal—-1 Y [,1literal-2 ] ———— {literal—m ¥

GIVING identifier—n [ROUNDED]

s v s e e s s e v dnnae
- — 042 vty s o b

——— o ot cooss ara12 suma . e A ot i R A seree PP i vt et oo e too oo et e g e oot e s

{; ON SIZE ERROR imperative—statement]

- - 0oui0 s pottn o mam

PAGE 286




7

USE AFTER STANDARD {EXCEPTION}

" — o o o o — D oo e T s bty s e e

PROCEDURE ON {file-name-1 [, file-name-2] ...

{BEFORE} ADVANCING {{identifier-2) {LINE >}
—————— {{integer >} {LINES}>
{AFTER } { PAGE >

- e o e

[:; INVALID KEY imperative-statement]

PAGE 287




GENERAL FORMAT FOR CONDITIONS

RELATION CONDITION:

{identitier-1 } {IS [NOT] GREATER THAN} {identifier-2

{literal-1 ¥ e oo o e e s
{index-name-1 } {IS LNOT] LESS THAN

- o o o o

{IS [NOT] EQUAL TO

- S s st et et

{IS [NOTJ >

€IS [NOT] <

{IS CNOT] =

CLASS CONDITION:

identifier IS LNOT] {NUMERIC >

{ALPHABETICY

———— e s . g matn Soost P S

CONDITION-NAME CONDITION:

condition—name

SWITCH-STATUS CONDITION:

condition—-name

NEGATED SIMPLE CONDITION:

NOT simple—condition

PAGE 288

{literal—-2
> {index—name—2

>

>

Wy




~~

COMBINED CONDITION:

condition {{AND) condition} ...

{0OR 2

PAGE 289




MISCELLANEOUS FORMATS

GUAL IFICATION:

{data-name-1 ¥ CL{OF¥ data-name-21 ...
{condition-namel} -_

{IN}

paragraph-name L[{OF) section-—namel

{INY
SUBSCRIPTING:
{data—-name ¥ (subscript—-1 [, subscript-2 [, subscript-31 1)
{condition-namel
INDEXING:
{data—-name Y ({index-name—-1 [{+) literal-21%
{condition-name} <{literal-1l {-> ¥

L, {index-name-2L{+) literal-41>
{literal-3 {3 ¥

[, {index—name-3 [{+) literal—-&] ¥ 1 1)
{literal-5 {~3 >

PAGE 290




IDENTIFIER:

FORMAT 1

data-name-1 [{0OF} data-name-2] ...

{IN}

—

[(subscript~1 [, subscript—2 [, subscript-31 1 ) 1

FORMAT 2
data-name—-1 L[{OF}) data-name-2] ... [( {index—-name~—-1 [({+} literal-21
~— {literal-1 {3
{IN}
[, {index—name—~2 L[{+} literal—-4]}

L,

{literal-3 {-} >

{index-name~3 L[{+} literal-&6l1) 11)1]
{literal-%5 {-2} >

PAGE 291




GENERAL FORMAT FOR COPY STATEMENT

COPY lext—-name

PAGE 292




COBOL LEVEL OF IMPLEMENTATION

Function Module

Implementation

Nucleus Level 2.
Table Handling Level 1+,
Sequential 1/0 lLevel 2.
Relative I/0 Level 2.
Indexed 1/0 Level 2.
Sort—Merge Null.
Report HWriter Null.
Segmentation lLevel 1.
Library Level 1.
Debug N/S. Conditional compile and
execution time interactive debugger.
Inter-program Communication Level 1.
Communication Modified ACCEPT and DISPLAY for
terminal communication.
ANSI COBOL X3.23 1974
! H FEDERAL INFORMATION
H ! PROCESSING STANDARD (FIPS)
{ MODULE e akaltts bkl —— ———— - -
H H ! HIGH H LOW :
! { HIGH | INTERMEDIATE | INTERMEDIATE | LOW
! NUCLEUS ! 2 i 2 ! 1 S |
! TABLE HANDLING | 2 i 2 ! 1 L |
{ SEQUENTIAL I/0 | 2 | 2 H i HE |
! RELATIVE I/0 H 2 i 2 H 1 Po-
i INDEXED I/0 H 2 | - t - -
{ SORT-MERGE H 2 | 1 H - R
! REPORT WRITER H - 1 - } - HEE
i SEGMENTATION H 2 | i ! 1 i
i LIBRARY : 2 1 1 : 1 T -
! DEBUG ! 2 |1 2 i 1 R
{ INTER-PROGRAM : i ! !
H COMMUNICATION | 2 i 2 H 1 .
{ COMMUNICATION : 2 | 2 ! - o=

———— -

N/8 = Nonstandard

——— s oot 20008 1t i et

PAGE 293

e WE e me ww WE e M e me M e




EXTENSIONS BEYOND STATED LEVELS

Level

Level

Level

Level

2 Nucleus (2 NUC):

Data description includes a USAGE type of COMPUTATIONAL-1 or
COMP—-1 for describing single word two’s complement signed
binary data (nonstandard).

Data description includes a USAGE type of COMPUTATIONAL-3 or
COMP-3 for describing packed decimal data (nonstandard).

The ACCEPT statement allows multiple operands (nonstandard).

The ACCEPT statement includes syntax for specifying CRT
control information (nonstandard).

The DISPLAY statement includes syntax for specifying CRT
control information (nonstandard).
1 Table Handling (1 TBL):

Variable group size (OCCURS DEPENDING).

2 Sequential I-0 (2 SEQ):

The file control SELECT clause allows specification of the
external file name as a literal or data item (nonstandard).

The READ statement includes the WITH NO LOCK option
{(nonstandard).

The UNLOCK statement is included (nonstandard).

2 Relative I-0 (2 REL):

The file contrel SELECT clause allows specification of <the
external file name as a literal or data item (nonstandard).

The READ statement includes the WITH NO LOCK option
{nonstandard).

The UNLOCK statement is included. {(nonstandard).

PAGE 294




Level

—

Level

Level

lLevel

2 Indexed I-0 (2 INX):

The file control SELECT clause allows specification of the
external file name as a literal or data item (nonstandard).

The READ statement includes the WITH NO LOCK option
(nonstandard).

The UNLOCK statement is included (nonstandard).

1 Debug (1 DEB):

An interactive execution time debug facility is provided
(nonstandard).

1 Inter-Program Communication (1 IPC):

The CALL statement allows literals in USING phrase
(nonstandard).

The CALL statement allows identifiers in the USING phrase to
be described with level number 01 through 49 and level
number 77 (nonstandard).

The CALL statement supports specification of a variable
program name as identifier—-1 (level 2 IPC).

1 Communicatiaon (1 COM):

ACCEPT and DISPLAY allow specification of complete screen
format in the Procedure Division (nonstandard).

PAGE 295




EXCEPTIONS TO STATED LEVELS h

l.evel 2 Nucleus (2 NUC):

- DATE-COMPILED is not supported in the Identification
Divison.

- In data description the SIGN clause cannot specify LEADING
for the operational sign; omission of the SEPARATE phrase
has no effect; all operational signs are separate trailing
characters.

-~ Alphabet-name I8 1literal or implementor—-name may not be
specified in SPECIAL-NAMES paragraph.

- Multiple results are not supported in arithmetic statements.
-~ REMAINDER is not supported in DIVIDE statement.

~ A procedure-name is required in GO TO statements.

—~ INSPECT data items are restricted to single character.

- Compound TALLYING and REPLACING clauses in the INSPECT —~
statement are not supported.

- When wused in the Procedure Division, the numeric literal in
the ALL form of a figurative constant may not contain more
than one character.

- Arithmetic expressions may be wused only in COMPUTE
statements.

- Exponentiation to a noninteger power is not supported.
— Sign conditions are not supported.
- Abbreviated combined relation conditions are not supported.
- The STRING and UNSTRING statements are not supported.
Level 2 Sequential I-0 (2 SEQ):

- OPTIONAL and RESERVE may not be specified in the SELECT
clause.

- RERUN, SAME AREA or MULTIPLE FILE clauses are not supported
in I-0-CONTROL.

PAGE 296




Level

CODE-SET and LINAGE clauses may not be specified in a file
description entry.

The mnemonic—name and EOP options of the WRITE statement arve
not supported.

The REVERSED option of the OPEN statement is not supported.

The FOR REMOVAL option of the CLOSE statement is not
supported.

2 Relative I-0 (2 REL):

The RESERVE clause of the SELECT entry is not supported.

Level

Level

LLevel

Level

RERUN, SAME AREA or MULTIPLE FILE clauses are not supported
in I-0-CONTROL.

The VALUE OF clause in an FD entry must not specify a data
name.

2 Indexed I-0 (2 INX):
The RESERVE clause of the SELECT entry is not supported.

RERUN. SAME AREA or MULTIPLE FILE clauses are not supported
in I-0-CONTROL.

1 Segmentation (1 SEG):

All independent segments must physically follow the fixed
permanent segments in the source program.

1 Library (1 LIB):

A copy sentence must be the last entry in area B of a source
record.

1 Inter-Program Communication (1 IPC):

A CAllLed program is automatically cancelled wvpon execution
of the EXIT PROGRAM statement.

PAGE 297




