
TRs-ao@ MODEL I/Ill

RSCOBOL
LANGUAGE
REFERENCE
MANUAL

A Description of the
RSCOBOL Programming
Language

ljfflj'.D TRS-BD

TM

SOFTWARE

CUSTOM MANUFACTURED IN THE USA FOR RADIO SHACK!! A DIVISION OF TANDY CORP.

~-

---~

COPYRIGHT NOTICES

TRS-80 MODEL II COBOL
(C) (P) 1980 by Ryan-McFarland Corporation, Aptos, California
95003; Licensed to Tandy Corporation) Fort Worth, Texas 76102.
All rights reserved.

TRS-80 MODEL II TRSDOS DISK OPERATING SYSTEM (TRSDOS)
(C) (P) 1980 by Tandy Corporation. All rights reserved.

TRS-80 MODEL II COBOL LANGUAGE REFERENCE MANUAL
(C) 1980 by Ryan-McFarland Corporation; Licensed to Tandy
Corporation. All rights rserved.

Reproduction or use, without express permission, of editorial or
pictorial content, in any manner, is prohibited. While every
precaution has been taken in the preparation of this book, Tandy
Corporation assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting from the
use of the information contained herein.

PREFACE

This reference document describes the COBOL Language as
implemented on the Radio Shack TRS-80 Model II Microcomputer under
the TRSDOS Disk Operating System.

It assumes the reader is familiar with the COBOL Language, the
general operation of the TRS-80 Model II Microcomputer, and the
TRSDOS Operating System. The reader is specifically referred to
the following publications:

TRS-80 Model II COBOL User's Guide
TRS-80 Model II Operation Manual
TRS-80 Model II Disk Operating System Reference Manual

ACKNOWLEDGEMENT

Much of the material in this manual is extracted from
X3.23-1974 COBOL Standard. Accordingly, the
acknowledgement is made as required in that document.

the ANSI
following

COBOL is an industry language and is not the property of any
company or group of companies, or of any organization or group of
organizations.

No warranty, expressed or implied, is made by any contributor or
by the CODASYL Programming Language Committee as to the accuracy
and functioning of the programming system and language. Moreover,
no responsibility is assumed by any contributor, or by the
committee, in connection therewith.

The authors and copyright holders of the copyrighted material used
herein

FLOW-MATIC (trademark of Sperry Rand Corporation>, Programming
for the UNIVAC I and II, Data Automation Systems copyrighted
1958, 1959, by Sperry Rand CorporationJ IBM Commercial
Translator Form No. F28- 8013, copyrighted 1959 by IBM; FACT,
OSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or
in part, in the COBOL specifications. Such authorization extends
to the reproduction and use of COBOL specifications in programming
manuals or similar publications.

TABLE OF CONTENTS

Page

I. INTRODUCTION. 1

INTRODUCTION TO COBOL........................... 2
What is COBOL?.............................. 2
The History of COBOL........................ 3
The Standardization of COBOL................ 4

CONVENTIONS USED IN THIS MANUAL................. 5
Words....................................... 5
Brae kets and Braces.. 5
Ellipses.................................... 5
Punctuation. 6
Speciai Characters.......................... 6
System Dependent Information................ 6

II. THE STRUCTURE OF THE COBOL LANGUAGE............ 7

THE LANGUAGE STRUCTURE.......................... 8
Character Set.. 8
Separators. 10
Character-Strings 11
COBOL Words................................. 11
User Words. 12
Reserved Words.............................. 15
Li tera 1 s. 18
Picture String.............................. 19
Comment-EntrlJ............................... 19
System Names................................ 19

THE PROGRAM STRUCTURE 20
Source Format 20
Statements. 22
Sentences. 23
Clauses and Entries 23
Paragraphs. 24
Sections. 24
Divisions.. 24

THE COPY STATEMENT 25

III. IDENTIFICATION DIVISION 27

INTRODUCTION. 28

PROGRAM IDENTIFICATION 28
The PROGRAM-ID Paragraph 29
The AUTHOR,. INSTALLATION, DATE-WRITTEN,

SECURITY Paragraphs. 29

IV. ENVIRONMENT DIVISION 30

INTRODUCTION.... 31

CONFIGURATION SECTION 32
The SOURCE-COMPUTER Paragraph 32
The OBJECT-COMPUTER Paragraph 33
The SPECIAL-NAMES Paragraph 34

INPUT-OUTPUT SECTION 36
The FILE-CONTROL Paragraph 36
The Seq,uent ial File Contra l Entry. 37
The Relative Fi le Control Entry............. 39
The Indexed File Control Entry 41
The I-0 CONTROL Par~graph 44

V. DATA DIVISION.... 45

INTRODUCTION...... 46

FILE SECTION. 48
The File Description Entry 49
The BLOCK CONTAINS Clause 50
The RECORD CONTAINS Clause 51
The LABEL RECORD Clause 52
The VALUE OF Clause.. 52
The DATA RECORDS Clause. 53

WORKING-STORAGE SECTION 54

LINKAGE SECTION. 54

RECORD DESCRIPTION ENTRY 55
Level-Numbers...... 55
Elementary Items. 55

77 LEVEL DESCRIPTION ENTRY 56

.. /""'.

THE DATA DESCRIPTION ENTRY 57
The Level-Number 60
The Data Name or FILLER Clause 61
The REDEFINES Clause 62
The PICTURE Clause 64
The USAGE Clause. 75
The SIGN Clause... 77
The OCCURS Clause 78
The SYNCHRONIZED Clause 80
The JUSTIFIED Clause 82
The BLANK WHEN ZERO Clause 83
The VALUE IS Clause 84
The RENAMES Clause... 87

DATA STRUCTURES 89
Classes of Data. 89
Representation of Numeric Items 90
Representation of Algebraic Signs 90
Standard Alignment Rules 91

GUALIFICATION...... 92

SUBSCRIPTING. 94

INDEXING.. 95

IDENTIFIER........ 96

CONDITION-NAME 97

TABLE HANDLING 98

VI. PROCEDURE DIVISION... 101

THE PROCEDURE DIVISION 102
StructuT'e. 103
Declaratives. 104
Procedures. 104
Execution. 104

PROCEDURE REFERENCES 105

SEGMENTATION. 107
Segments. 107
Segmentation Classification................. 108
Segmentation Control 108
Restrictions on Program Flow 108

THE USE STATEMENT 110

ARITHMETIC STATEMENTS 112
Ari th met i c Expressions. 112
Arithmetic Operators 113
Formation and Evaluation Rules 113

CONDITIONALS. 114
Relation Condition 115
Class Condition............................. 118
Condition-name <Conditional Variable) 119
Switch-Status Condition. 120
Complex Conditions 120
Negated Simp 1 e Conditions. 121
Combined and Negated Combined

Condit i ans. 121
Condition Evaluation Rules 122

SEQUENTIAL ORGANIZATION INPUT-OUTPUT 123
Function.................................... 123
Organization.. 123
Access Mode.... 123
Current Record Pointer 123
I-0 Status. 124

RELATIVE ORGANIZATION INPUT-OUTPUT 126
Function.................................... 126
Organization. 126
Access Mod es. 126
Current Record Pointer 127
I-0 Status. 127
The INVALID KEY Condition 129
The AT END Con d it ion. 130

INDEXED ORGANIZATION INPUT-OUTPUT 131
Function.................................... 131
Organization.... 131
Access Modes... 131
Current Record Pointer 132
I-0 Status. 132
The INVALID KEY Condition 136
The AT END Condition 136

PROCEDURAL STATEMENTS 137
ACCEPT ... FROM Statement. 137
ACCEPT Statement <Terminal I-0) 139
ADO Statement. 145
ALTER Statement. 149
CALL Statement. 150
CLOSE Statement <Sequential I-0> 152
CLOSE Statement <Relative & Indexed I-0) 154
COMPUTE Statement. 155
DELETE Statement <Relative & Indexed I-0> ... 157
DISPLAY Statement (Terminal I-0>............ 158
DIVIDE Statement. 162
EXIT Statement. 165
GO TO Statement 166
IF Statement. 167
INSPECT Statement 169
MOVE Statement. 177
MULTIPLY Statement 182
OPEN Statement < Sequent ia 1 I-0 >. 184
OPEN Statement <Relative & Indexed I-0) 188
PERFORM Statement 192
READ Statement (Sequential I-0) 203
READ Statement <Relative & Indexed I-0) 205
REWRITE Statement (Sequential I-0) 209
REWRITE Statement <Relative & Indexed I-0) .. 211
SET Statement 213
START Statement <Relative & Indexed I-0>. ... 215
STOP Statement. 217
SUBTRACT Statement 218
UNLOCK Statement 222
WRITE Statement (Sequential I-0>. 223
WRITE Statement <Relative & Indexed I-0) 226

APPENDIX A: ERROR MESSAGES 229

APPENDIX B: RESERVED WORDS 237

APPENDIX C: GLOSSARY 242

APPENDIX D: COMPOSITE LANGUAGE SKELETON 267

I

INTRODUCTION

PAGE 1

INTRODUCTION TO COBOL

What is COBOL?

COBOL (COmmon Business Oriented Language) is an English oriented
programming language designed primarily for developing business
applications on computers. It is described as English oriented
because its free form enables a programmer to write in such a way
that the final result can be read easily and the general flow of
the logic can be understood by persons not necessarily as closely
allied with the details of the problem as the programmer himself.

Because COBOL is a programming language it can be translated to
serve as communication between the programmer and the computer.
The COBOL program <the source program> which has been written by
the programmer is input to the COBOL compiler. The COBOL compiler
then translates the COBOL program into a machine readable form
(the obJect program).

Although each computer has its own unique COBOL
an industry-wide COBOL effort has resulted
compatibility so that a COBOL source program
among different computers of one manufacturer
of different manufacturers.

compiler program,
in a degree of

can be exchanged
or among computers

A COBOL program is both a readable document and an efficient
computer program. Throughout the study of the COBOL language, it
is important to keep these two basic capabilities of COBOL in mind
and to observe the close relationship between them.

The readability factor of the COBOL language facilitates
communication not only between programmer and management, but also
among programmers, with a minimum of additional documentation. The
readability factor need not affect the other equally important
capability of constituting an efficient computer program. It is
precisely here that the attention of a good COBOL programmer is
centered. He can produce a solution in the form of a
well-integrated COBOL program by combining the
following: knowledge of the problem, programming technique,
capability of the equipment, and familiarity with the available
elements of the COBOL language.

PAGE 2

~ The History of COBOL

Development of the COBOL programming language is a continuing
process performed by the Programming Language Committee (PLC> of
the conference on DAta SYstems Languages <CODASYL>. This committee
is made up of representatives of computer manufacturers and
computer users.

The first version of the COBOL programming language to be
published by CODASYL was called COBOL-60. The second version,
called COBOL-61, contained changes in the organization of the
Procedure Division and thus was not completely compatible with
COBOL-60.

In 1963 the third version, called COBOL-61 Extended, was released.
It was basically COBOL-61 with the addition of the sort feature,
the addition of the report writer feature, and the modification of
the arithmetics to include multiple receiving fields and the
CORRESPONDING option.

The fourth version of the COBOL programming language, COBOL-65,
consists of COBOL-61 Extended with the inclusion of a series of
options to provide for the reading, writing, and processing of
mass storage files and the addition of table handling features.

Beginning in 1968 the CODASYL COBOL Programming Language Committee
began to report its developmental work in a Journal of
Development. The first report to be published was the CODASYL
COBOL Journal of Development -- 1968. This Journal is the official
report of the CODASYL COBOL Programming Language Committee and it
documents the developmental activities of CODASYL through July
1968. COBOL-68 is based on COBOL-65 with certain additions and
deletions.

Additional COBOL Journal of Development reports were published in
1969, 1970 and 1973. Each documented the developmental activities
of CODA&YL from the previous report, resulting in continually
varying COBOL definitions.

PAGE 3

The Standardization of COBOL

In September 1962 the American National Standards Institute (ANSI>
set up a committee to work on the definition of a standard COBOL
programming language. This standardization effort was based on the
technical content of COBOL as defined by CODASYL. In August 1968
an American National Standard COBOL was approved which was based
upon the developmental work of CODASYL through January 1968. This
first version was called American National Standard COBOL 1968.

In May 1974 a revision of American National Standard COBOL was
approved. This revision, called American National Standard COBOL
1974, is based upon the developmental work of CODASYL through
December 1971. The COBOL programming language and compiler
described in this document is based on the American National
Standard COBOL 1974.

PAGE 4

_,.,,-·

CONVENTIONS USED IN THIS MANUAL

This manual presents the language definition and capabilities of
COBOL in a generally accepted syntax consistent with the 1974
American National Standard COBOL document. As a result, COBOL
Syntax is specified by formats employing special notation.

Words

All underlined uppercase words are key words and are re~uired when
the functions of which they are a part are used. Uppercase words
which are not underlined are optional and may or may not be
present in the source program. Uppercase words, whether underlined
or not, must be spelled correctly.

Lowercase words are generic terms used to represent COBOL words,
literals, PICTURE character-strings, comment-entries, or a
complete syntactical entry that must be supplied by the user. When
generic terms are repeated in a general format, a number or letter
appendage to the term serves to identify that term for explanation
or discussion.

Brackets and Braces

When a portion of a general format is enclosed in brackets, [J,
that portion may be included or omitted at the user's choice.
Braces, {}, enclosing a portion of a general format means a
selection of one of the options contained within the braces must
be made. In both cases, a choice is indicated by vertically
stacking the possibilities. When brackets or braces enclose a
portion of a format, but only one possibility is shown, the
function of the brackets or braces is to delimit that portion of
the format to which a following ellipsis applies. If an option
within braces contains only reserved words that are not key words,
then the option is a default option (implicity selected unless one
of the other options is explicitly indicated).

Ellipsis

The ellipsis (... >represents the position at which repetition may
.--.. occur at the useT's option.

PAGE 5

Punctuation

The punctuation characters comma and semicolon are shown in some
formats. Where shown in the formats, they are optional and may be
included or omitted by the user. In the source program these two
punctuation characters are interchangeable and either may be used
anywhere one of them is shown in the formats. Neither one may
appear immediately preceding the first clause of an entry or
paragraph.

If desired, a semicolon or comma may be used between statements in
the Procedure Division.

Paragraphs within the Identification and Procedure Divisions, and
the entries within the Environment and Data Divisions must be
terminated by the separator period.

Special Characters

The characters '+', '-', '>', '<', '=', when appearing in formats,
although not underlined, are required when such formats are used.

System Dependent Information

Selected features in ANSI COBOL are intended for
implementor, to accomodate the capabilities and
the host system. These system dependent items
the COBOL Users Guide.

PAGE 6

definition by the
restrictions of

are summarized in

II

THE STRUCTURE OF THE COBOL LANGUAGE

PAGE 7

THE LANGUAGE STRUCTURE

The smallest element in the COBOL language is the character. A
character is a digit, a letter of the alphabet, or a symbol. A
COBOL word is one possible result obtained when one or more COBOL
characters are Joined in a sequence of contiguous characters. Just
as English words are determined by rules of spelling, so COBOL
words are formed by following a specific set of rules.

Using the COBOL rules of grammar, the COBOL words and COBOL
punctuation characters are combined into statements, sentences,
paragraphs, and sections. When writing normal English, a failure
to follow the rules of grammar and sentence structure may cause
misunderstanding; the same is true when writing COBOL. It must be
emphasized that a thorough knowledge of the rules of COBOL
structure is a prerequisite to writing a workable COBOL program.

Character Set

The COBOL character set consists of fifty-one characters:

Digits

Letters

Punctuation

Special

II

(

)

:>
<:
+

* I
=
$

0 through 9

A through z

Blank <or space)
Comma
Semicolon
Period
Guote
Left parenthesis
Right parenthesis

Greater than
Less than
Plus
Minus (or hyphen)
Asterisk
Slash (or Stroke)
Equal
Currency

These characters determine the structure of a COBOL program. In
some constructs, such as comments, other characters may be used
but they have no grammatical meaning.

PAGE 8

Characters are combined to form either a separator
character-string.

or a

The COBOL character set is a proper subset of the ASCII character
code set native to the computer. The complete character set may be
used only within non numeric literals and comments. The chart
below gives the hexadecimal and decimal codes for the complete
character set.

Hexadecimal Decimal Hexadecimal Decimal
Character Value Value Character Value Value

Space

II

,
(

)

* +

I
0
1
2
3
4
5
6
7
8
9

<
=
>
?

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

PAGE 9

@

A
B
C
D
E
F
G
H
I
.J
K
L
M
N
0
p
G
R
s
T
u
V
w
X
y
z
[

\
l

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
50
5E
5F

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
BB
89
90
91
92
93
94
95

Separators

A separator is a string of one or more punctuation characters.

Punctuation characters belong to the following set:

=
(

II

)

Space
Comma
Eq_ual sign
Left parenthesis
Period
Quotation mark (double)
Right parenthesis
Semicolon

Separators are formed according to the following rules:

1. A space is
separator,

a separator. Anywhere a space
more than one space may be used.

is used as a

2. Comma, semi co 1 on, and period are separators when immediately
f o 11 owed by a space. These separators may ap p_ear on 1 y 111h en
explicitly permitted.

3. Parentheses are separators which may appear only in balanced
pairs of left and right parentheses delimiting subscripts,
indices, arithmetic expressions or conditions.

Left parentheses must be preceded by a separator space or left
parenthesis.

Right parenthesis must be followed by one of the separators:
space, period, semicolon, comma or right parenthesis.

4. Quotes are separators which may appear only in balanced pairs
delimiting the nonnumeric literals except when the literal is
continued.

An opening q_uotation mark must be immediately preceded by a
space or left parenthesis.

A closing q_uotation mark must be immediately followed by one
of the separators: space, comma, semicolon, period or right
parenthesis.

PAGE 10

5. The separator space may optionally immediately precede all
separators except:

As specified bv reference format rules.

As the separator c 1 os i ng quotation mark. In this case, a
preceding space is considered as part of the nonnumeric
literal and not as a separator.

The separator space may optionally immediately follow any
separator except the opening quotation mark. In this case, a
following space is considered as part of the nonnumeric
literal and not as a separator.

Any punctuation character which appears as part of the
specification of a PICTURE character-string or numeric literal is
not considered as a punctuation character, but rather as a symbol
used in the specification of that PICTURE character-string or
numeric literal. PICTURE character-strings are delimited only by
the separators space, comma, semicolon, or period.

These rules do not apply
literals, picture strings,

Character-Strings

to the characters
or comments.

within nonnumeric

A character-string is a sequence of one or more characters that
form a COBOL word, literal, picture string, or comment. A
character-string is delimited by separators.

COBOL Words

A COBOL word is a character-string of not more than 30 characters
which form either a user word or a reserved word. All words are
one or the other.

PAGE 11

User Words

User words are composed of the alphabetic characters, the numbers,
and the hyphen character. A user word must not begin or end with a
hyphen. With the exception of paragraph-name, section-name,
level-number and segment-number, all user-defined words must
contain at least one alphabetic character. There are twelve types
of user words:

program-name
file-name
record-name
data-name
pa1'agraph-name
section-name

Program-Name

condition-name
index-name
alphabet-name
text-name
level-number
segment-number

The program-name identifies the COBOL source and obJect p1'og1'am.
The name must contain at least one alphabetic character. Only the
first 6 characters are associated with the obJect program.

File-Name

File-names are the internal names for files accessed by the source
progt'am. They are not necessarily the same as the exte1'nal names
given to the f i 1 es. Fi 1 e-names must contain at 1 east one
alphabetic character and must be unique.

Reco,-d-Name

Record-names are used to name data records within a file. They
must contain at least one alphabetic character and, if not unique,
must be made unique by qualification with the file name.

Data-Name

A group of contiguous characters or a word of binary data treated
as a unit of data is called a data item, named by a data-name. A
data-name must contain at least one alphabetic character.
Refe,-ences to data items must be made unique by qualification or
the appending of subscripts (or indices) or both. Complete unique
references to data items are called identifiers.

PAGE 12

Paragraph-Name

A paragraph-name is a
of a set of COBOL
paragraph-name must
section-name.

Section-Name

procedure name that identifies the beginning
procedural sentences. If not unique, a

be made unique by qualification with a

A section-name is a procedure name that identifies the beginning
of a set of paragraphs. Section-names must be unique.

Condition-Name

A condition-name may be defined in the SPECIAL-NAMES paragraph
within the Environment Division or in a level-number 88
description within the Data Division.

A SPECIAL-NAMES condition-name is assigned to ON STATUS or OFF
STATUS of one of eight system software switches.

A level-number 88 condition-name is assigned to a specific value,
set of values, or range of values within a complete set of values

1
--. that a data item may assume. The data item itself is called a

conditional variable.

A condition-name is used only in conditions as an abbreviation for
the relation condition which assumes that the associated switch or
conditional variable is equal to one of the set of values to which
that condition-name is assigned.

Index-Name

An index-name names an index associated with a specific table. It
must contain at least one alphabetic character and must be unique.

Alphabet-Name

An alphabet-name is used to specify a character code set. It must
contain at least one alphabetic character and must be unique.

Text-Name

A text-name is the name of a COBOL library text file. It must
correspond exactly to a valid file access-name as described in the
operating system documentation.

PAGE 13

Level-Number

A level-number is used to specify the position of a data item
within a data hierarchy. A level-number is a one- or two-digit
number in the range 01-49, 66, 77 or 88.

Level-numbers 66, 77 and 88 identify special properties of a data
description entry.

Segment-Number

A segment-number specifies the segmentation classification of a
section. It is a one- to two-digit number in the range 01-99.

PAGE 14

Reserved Words

The structure of COBOL governs the use of certain COBOL words
called reserved words. Reserved words, recognized by the COBOL
compiler, aid the compiler in determining how to generate a
program. A programmer cannot devise a reserved word for a COBOL
program; he must use the word designated by the format of the
language. A reserved word must not appear as a user-defined word
within a program. A list of all reserved words recognized by the
compiler is shown in Appendix B.

Five kinds of reserved words are recognized by the compiler:

Key Words

Ke!J words
Optional words
Connectives
Fi~urative constants
Special-characters

Key words are re~uired elements of COBOL formats. Their presence
indicates specific compiler action.

Optional Wol'ds

Optional words are optional elements of COBOL formats.
presence has no effect on the obJect program.

Connectives

Their

The connectives OF and IN are used interchangeably to connect
~ualifiers to a user word. The words AND and OR are logical
connectives and are used in the formation of conditions.

PAGE 15

Figurative Constants

Figurative constants identi,y commonly used constant values. These
constant values are generated by the compiler according to the
context in which the references occur. Note that figuratives
represent values, not literal occurrences. Thus GUOTE cannot be
used to delimit a nonnumeric literal, SPACE is not a separator,
and so forth. Singular and plural forms of figuratives are
equivalent and may be used interchangeably.

ZERO
ZEROS
ZEROES

Represents the value O or one or more zero (0) characters,
depending on context.

SPACE
SPACES

Represents one or more space <) characters.

HIGH-VALUE
HIGH-VALUES

Represents one or more of the highest
collating sequence (hexadecimal FF>.

LOW-VALUE
LOW-VALUES

characters in the

Represents one or more of the lowest characters in the
collating sequence <hexadecimal 00).

GUOTE
GUOTES

Represents one or more quote (") characters.

PAGE 16

ALL literal

Represents one or more of the characters comprising the literal.
The literal must be either a nonnumeric literal or a figurative
constant. When a figurative constant is used, the word ALL is
redundant.

When a figurative constant represents a string of one or more
characters, the length of the string is determined by the compiler
from context according to the following rules:

1. When a figurative constant is associated with another data
item, as when the figurative constant is moved to or compared
with another data item, the string of characters specified by
the figurative constant is repeated character-by-character on
the right until the size of the resultant string is equal to
the size in characters of the associated data item. This is
done prior to and independent of the application of any
JUSTIFIED clause that may be associated with the data item.

2. When a figurative
data item, as when
DISPLAY or STOP
character.

constant is not associated with another
the figurative constant appears in a

statement, the length of the string is one

A figurative constant may be used wherever a literal appears in a
format, except that whenever the literal is restricted to having
only numeric characters in it, the only figurative constant
permitted is ZERO <ZEROS, ZEROES>.

Each reserved word which
constant value is a distinct
of the construction 'ALL
distinct character-strings.

Special Characters

is used to reference a figurative
character-string with the exception
literal' which is composed of two

The special character words are the arithmetic operators and
relation characters:

+ Plus sign (indexing>
Minus sign (indexing>

> Greater than
< Less than
= Equal to

PAGE 17

Literals

A literal is a character-string whose form determines its value.
Literals are either nonnumeric or numeric.

Nonnumeric Literals

A nonnumeric literal is a character-string enclosed in quotes. Any
characters in the COBOL character set may be used. Guote
characters within the string are represented by two contiguous
quotes. The value of the literal is the string itself excluding
the delimiting quotes and one of each contiguous pair of imbedded
quotes. The value of the literal may contain from 1 to 2047
characters.

Examples:

Literal

11 AGE? 11

It II "TWENTY 1111 ?"
HUUUII

Numeric Literals

Value

AGE?
"TWENTY"?
illegal (odd number of quotes)

A numeric literal represents a numeric value, not a
character-string. Numeric literals are composed according to the
following rules:

1. The literal must contain from 1 to 18 digits.

2. The literal may contain a single plus or minus sign if it is
the first character.

3. The literal may contain a single decimal point if it is not
the last character. The decimal point must be represented with
a comma if the DECIMAL-POINT IS COMMA phrase is specified in
the SPECIAL-NAMES paragraph.

Examples:

1234
+1234
-1.234

. 1234
+. 1234

PAGE 18

Picture String

A picture string consists of certain combinations
from the COBOL character set used as symbols.
character appearing as part of a picture string is
be a symbol, not a punctuation character.

Comment-Entry

of characters
Any punctuation

considered to

A comment-entry is an entry in the Identification Division that
may contain any characters from the computer's character set.

System Names

System names identify certain hardware or software system
components. System names consist of device-names and switch-names.

Device-Names

PRINT
INPUT
OUTPUT
INPUT-OUTPUT
RANDOM

Switch-Names

SWITCH-1

SWITCH-8

Component

printer or print file
input only device
output only device
input-output device
disc

Component

software switches

PAGE 19

THE PROGRAM STRUCTURE

Source Format

COBOL programs are accepted as a sequence of formatted lines <or
records) of 80 characters or less. Each line is divided into five
areas:

Columns

1-6
7
8-11
12-72
73-80

Area

sequence number
indicator
A
B
identification

The sequence number and identification areas are used for clerical
and documentation purposes. They are ignored by the compiler.

The indicator area is used for denoting line continuation,
comments, and debugging.

Areas A and B contain the actual program according to the ,-....._
following rules:

1. Division headers, section headers, paragraph headers,
section-names, and paragraph-names must begin in area A.

2. The Data Division level indicator FD and level-numbers 01 and
77 must begin in area A. Other level-numbers may begin in area
A or area B, although Bis preferable.

3. The key word DECLARATIVES and the key words END DECLARATIVES,
precede and follow, respectively, the declaratives portion of
the Procedure Division. Each must appear on a line by itself
and each must begin in area A and be followed by a period and
a space.

4. Any other language
immediately follows,

element must begin in area B unless it
on the same line, an element in area A.

PAGE 20

Continuation of Lines

Whenever a sentence, entry, phrase, or clause requires more than
one line, it may be continued by starting subsequent line<s> in
area B. These subsequent lines are called the continuation
line<s>. The line being continued is called the continued line.
Any word or literal may be broken in such a way that part of it
appears on a continuation line, according to the following rules:

1. A hyphen in the indicator area of a line indicates that the
first nonblank character in area B of the current line is the
successor of the last nonblank character of the preceding line
without any intervening space. However, if the continued line
contains a nonnumeric literal without closing quotation mark,
the first nonblank character in area Bon the continuation
line must be a quotation mark, and the continuation starts
with the character immediately after that quotation mark. All
spaces at the end of the continued line are considered part of
the literal. Area A of continuation line must be blank.

2. If there is no hyphen in the indicator area of a line, it is
assumed that the last character in the preceding line is
followed by a space.

Blank Lines

A blank line is one that is blank in the indicator, A and B areas.
A blank line can appear anywhere in the source program, except
immediately preceding a continuation line with a hyphen in the
indicator area.

Comment Lines

A comment line is any line with an asterisk <*> in the indicator
area of the line. A comment line can appear as any line in a
source program after the Identification Division header. Any
combination of characters from the computer's character set may be
included in area A and area B of that line. The asterisk and the
characters in area A and area B will be produced on the listing
but serve as documentation only.

Successive comment lines are allowed. Continuation of comment
lines is permitted, except that each continuation line must
contain an asterisk in the indicator area.

A special form of comment line represented by a slash (/) in the
indicator area of the line causes page eJection prior to printing
the comment.

PAGE 21

Debugging Lines

A debugging line is any line with a Din the indicator area of the
line. Any debugging line that consists solely of spaces from area
A to the identifier area is considered to be a blank line.

A program that contains debugging lines must be syntactically
correct with or without the debugging lines.

A debugging line will be
characteristics of a comment line
specified at compiler invocation.

considered to have all the
if the debug option is not

Successive debugging
lines is permitted,
contain a Din the
be broken across two

lines are allowed. Continuation of debugging
except that each continuation line must

indicator area, and character strings may not
1 i nes.

Statements

COBOL statements always begin with a key word called a verb.
are three kinds of statements: directive, conditional,
imperative.

There
and

A directive statement specifies action to be taken by the compiler
during compilation. The directive statements are:

The COPY and USE statements.

A conditional statement specifies that the truth
condition is to be determined and that the subse~uent
the obJect program is dependent on this truth
conditional statements are:

An IF statement.

value of a
action of

value. The

A READ statement with the AT END or INVALID KEY phrase.

A DELETE, REWRITE or START statement with the INVALID KEY
phrase.

A WRITE statement with the INVALID KEY phrase.

An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY,
SUBTRACT> with the SIZE ERROR phrase.

PAGE 22

~ An imperative statement specifies an unconditional action to be
taken by the obJect program. The imperative statements are:

A READ statement without the AT END or INVALID KEY phrase.

A DELETE, REWRITE or START statement without the INVALID KEY
phrase.

A WRITE statement without the INVALID KEY phrase.

An arithmetic statement (ADD, COMPUTE, DIVIDE,
SUBTRACT) without the ON SIZE ERROR phrase.

MULTI PLY,

An ACCEPT, ALTER, CLOSE, DISPLAY, EXIT, GO, INSPECT, MOVE,
OPEN, PERFORM, SET or STOP statement.

Whenever the term imperative-statement appears in the format of a
COBOL verb, it refers to one or more consecutive imperative
statements. The 5equence ends with a period separator or an ELSE
associated with an IF verb.

Sentences

A sentence is a sequence of one or more statements terminated by
the period separator. There are three kinds of sentences:
directive, conditional, and imperative.

A directive
statement.

sentence may contain only a single directive

A conditional sentence is a conditional statement, optionally
preceded by a sequence of imperative statements, terminated by a
period followed by a space.

An imperative sentence is one or more imperative statements
terminated by a period separator.

Clauses and Entries

An entry is an item of descriptive
of con sec ut i ve clauses. Each clause
entry. Clauses are separated by
separators. The entry is terminated

PAGE 23

or declaratory nature composed
specifies an attribute of the
space, comma, or semicolon

by a period separator.

Paragraphs

A paragraph is a sequence of an arbitrary number, which may
zero, of sentences or entries. In the Identification
Environment Divisions, each paragraph begins with a reserved
called a paragraph header. In the Procedure Division,
paragraph begins with a user-defined paragraph-name.

Sections

be
and

word
each

A section is a sequence of an arbitrary number, which may be zero,
of paragraphs in the Environment and Procedure Divisions and a
sequence of an arbitrary number, which may be zero, of entries in
the Data Division. In the Environment and Data Di visions, each
section begins with reserved words called a section header. In the
Procedure Division, each section begins with a user-defined
section-name.

Divisions

Each COBOL program consists of four divisions; each is composed of
paragraphs or sections. These are
Data, and Procedure divisions, in
re q, u ired . Each d iv is i on beg ins
called a division header.

PAGE 24

the Identification, Environment,
that order. All divisions are
with a group of reserved words

THE COPY STATEMENT

The COPY statement provides the facility for copying text from
user-specified files into the source program. Text is copied from
the file without change. The effect of the interpretation of the
COPY statement is to insert text into the source program, where it
will be treated by the compiler as part of the source program.

COBOL library text is placed on the COBOL library as a function
independent of the COBOL program and according to operating system
tee hn i q,ues.

FORMAT

COPY text-name.

The COPY statement must be preceded by a space and terminated by
the separator period. There must not be any additional text in
area B following the separator period.

,~ Text-name is the external identification of the file containing
the text to be copied. Its format conforms to the rules for
filename <or pathname) construction of the host operating system.
If the external identification contains any characters that are
not letters or digits, or if the first character is not a letter,
then the text-name must be written as a nonnumeric literal and
enclosed in q,uotation marks.

A COPY statement may occur in the source program anywhere a
characterstring or separator may occur except that a COPY
statement must not occur within a COPY statement.

The compilation of a source program containing COPY statements is
logically eq,uivalent to processing all COPY statements prior to
the processing of the resulting source program.

The effect of processing a COPY statement is that the library text
associated with text-name is copied into the source program,
logically replacing the entire COPY statement, beginning with the
reserved word COPY and ending with the punctuation character
period, inclusive.

The library text is copied unchanged.

Debugging
statement
statement
specified

lines are permitted within library
is specified on a debugging line,
will be processed only if the debug

in the compiler invocation options.

PAGE 25

text. If a COPY
then the COPY
option has been

The text produced as a result of processing a COPY
not contain a COPY statement.

statement may

The syntactic correctness of the library text cannot be
independently determined. The syntactic correctness of the entire
COBOL source cannot be determined until all COPY statements have
been completely processed.

Library text must conform to the rules for COBOL source format.

COPY Examples:

FILE-CONTROL.
COPY FLCTRL.

PROCEDURE DIVISION.
COPY II INPUTP. COBOL ti.

PAGE 26

/

III

IDENTIFICATION DIVISION

PAQE 27

INTRODUCTION

The Identification Division must be included in every COBOL source
program. This division identifies both the source program and the
resultant obJect program. In addition, the user may include other
commentary information.

FORMAT

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

(AUTHOR. Ccomment-entryl ... l

C INSTALLATION. [comment-entry l ... l

CDATE-WR ITTEN. Cc omment-entry l ... l

[SECURITY. Ccomment-entryl ... J

PROGRAM IDENTIFICATION

The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and a space.

Paragraph headers identify the type of information contained in
the paragraph. The name of the program must be given in the first
paragraph, which is the PROGRAM-ID paragraph. The other paragraphs
are optional and may be included at the user's choice, in the
order of presentation shown.

PAGE 28

The PROGRAM-ID Paragraph

The PROGRAM-ID paragraph, containing the program-name, identifies
the source program, the ob J ec t program, and a 11 listings
pertaining to a particular program. A program-name is a
user-defined word made up of only those characters from the word
set.

A program-name cannot exceed 8 characters in length, and must
contain at least one alphabetic character located in any position
within the program-name. Each program-name must be uni~ue.

The AUTHOR, INSTALLATION, DATE-WRITTEN, SECURITY Paragraphs

The AUTHOR, INSTALLATION, DATE-WRITTEN, and SECURITY paragraphs
are optional. The programmer may use these paragraphs to document
information pertaining to the paragraph header.

The comment-entry may be any combination of characters from the
computer's character set. The continuation of the comment-entry by
the use of the hyphen in the indicator area is not permitted;

/'""°'' however, the comment-entry may be contained on one or more lines.

PAGE 29

IV

ENVIRONMENT DIVISION

PAGE 30

INTRODUCTION

The Environment Division describes the hardware configuration of
the compiling computer (source computer> and the computer on which
the obJect program is run CobJect computer>. It also describes the
relationship between the files and the input/output media.

The Environment Division must be included in every COBOL source
program.

There are two sections in the Environment Division: the
Configuration Section and the Input-Output Section.

FORMAT

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer-name.

OBJECT-COMPUTER. computer-name.

[SPECIAL-NAMES. special-names-entry].

[INPUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entry}

[I-0-CONTROL. input-output-control-entry J l.

PAGE 31

CONFIGURATION SECTION

The Configuration Section deals with the characteristics of the
source computer and the obJect computer. This section is divided
into three paragraphs:

the SOURCE-COMPUTER paragraph, which describes the computer
configuration on which the source program is compiled

the OBJECT-COMPUTER paragraph, which
configuration on which the obJect
compiler is to be run

describes the computer
program produced by the

the SPECIAL-NAMES paragraph, which relates names used by the
compiler to user-names in the source program.

The SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph identifies the computer upon which
the program is to be compiled.

FORMAT

SOURCE-COMPUTER. computer-name.

Computer-name is a user-defined word and is only commentary.

PAGE 32

The OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph identifies the computer on which the
program is to be executed.

FORMAT

OBJECT-COMPUTER. computer-name

C,MEMORY SIZE integer <WORDS }l

{CHARACTERS}

<MODULES }

[,PROGRAM COLLATING SEQUENCE IS alphabet-name].

Computer-name is a user-defined word and is only commentary.

The MEMORY SIZE definition is treated as commentary.

The PROGRAM COLLATING SEQUENCE clause specifies the program
collating se~uence to be used in determining the truth value of
any nonnumeric comparisons. The Program Collating Sequence clause
is treated as commentary; the collating sequence is always ASCII.

PAGE 33

The SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph relates names used by the compiler to
user-names in the source program.

[SPECIAL-NAMES. [,switch-name

{ON STATUS IS cond-name-1 [,OFF STATUS IS cond-name-2J}J ...

<OFF STATUS IS cond-name-2 C,ON STATUS IS cond-name-1 l}

[,alphabet-name IS {STANDARD-!} J ...

{NATIVE }

C, CURRENCY SIGN IS literal-ll

C,DECIMAL-POINT IS COMMA] . J

------------- -----

Switch-name may be SWITCH-1, ... , SWITCH-8.

At least one condition-name must be associated with each
switch-name given. The status of the switch is specified by
condition-names and interrogated by testing the condition-names.

The alphabet-name clause provides a means for relating a name to a
specified character code set and/or collating se~uence. The
alphabet-name definition is treated as commentary; the collating
se~uence is always ASCII.

PAGE 34

The literal which appears in the CURRENCY SIGN IS literal clause
is used in the PICTURE clause to represent the currency symbol.
The literal is limited to a single character and must not be one
of the following characters:

digits O through 9;

alphabetic characters A, B, C, D, L, P, R, S, V, X, Z, or the
space;

special characters '*', '+', '-',
I II I

I '/', '='
I I

I I
I I

I
I. I

I I , (, ' ,) , '

If this clause is not present, only the currency sign($) is used
in the PICTURE clause.

The clause DECIMAL-POINT IS COMMA means that the function of comma
and period are exchanged in the character-string of the PICTURE
clause and in numeric literals.

PAGE 35

INPUT-OUTPUT SECTION

The INPUT-OUTPUT section names the files and external media
re~uired by an obJect program and provides information re~uired
for transmission and handling of data during execution of the
obJect program. This section is divided into two paragraphs:

the FILE-CONTROL paragraph which names and associates the
files with external media.

the I-0-CONTROL paragraph which defines special control
techni~ues to be used in the obJect program.

FORMAT

[INPUT-OUTPUT SECTION.

FI LE-CONTROL.

{file-control-entry}

C I - • -CONTROL.

I-0-control-entryll

The FILE-CONTROL Paragraph

The FILE-CONTROL paragraph names each file
specification of other file-related information.

FORMAT

FILE-CONTROL. {file-control-entry> ...

and allows

The content of the file-control-entry is dependent upon the
organization of the file named.

PAGE 36

The Se~uential File Control Entry

FORMAT

SELECT file-name

ASSIQN TO device-type, {"external-file-name"}
------ {data-name-1 }

[;ORGANIZATION IS SEGUENTIALJ

[;ACCESS MODE IS SEGUENTIALJ

[;FILE STATUS IS data-name-2].

The SELECT clause must be specified first in the file control
entry. The clauses which follow the SELECT clause may appear in
any order.

Each file described in the Data Division must be named once and
only once as file-name in the FILE-CONTROL paragraph. Each file
specified in the file control entry must have a file description
entry in the Data Division.

The ASSIGN clause specifies the association of the file referenced
by file-name to a storage medium.

Device-type must
OUTPUT, PRINT, or
performed.

be one of the device names INPUT, INPUT-OUTPUT,
RANDOM according to the operations to be

External-file-name specifies the file access name. It can be from
one to thirty characters in length and must be enclosed in
~uotation marks. A name longer than thirty characters will be
diagnosed as an error. The name may contain any se~uence of
characters supported by the operating system for file access
names.

Data-name-1 must be defined in the Data Division as a data item of
category alphanumeric and must not be defined in the Linkage
Section. Its value at the time of an OPEN statement execution will
be used as the file access name. Data-name-1 may be ~ualified.

PAGE 37

The ORGANIZATION clause specifies the logical structure of a file. /~
The file organization is established at the time a file is created
and cannot subsequently be changed.

Records in the file are accessed in the sequence dictated by the
file organization. This sequence is specified by
predecessor-successor record relationships established by the
execution of WRITE statements when the file is created or
extended.

When the ORGANIZATION clause is not specified, ORGANIZATION IS
SEGUENTIAL is implied.

The ACCESS MODE clause specifies the order in which records are
read or written.

If the ACCESS MODE clause is not specified, ACCESS MODE IS
SEGUENTIAL is implied.

When the FILE STATUS clause is specified, a value will be moved by
the operating system into the data item specified by data-name-2
after the execution of every statement that references that file
either explicitly or implicitly. This value indicates the status
of execution of the statement.

Data-name-2 must be defined in the Data Division as a
two-character data item of the category alphanumeric and must not
be defined in the File Section. Oata-name-2 may be qualified.

PAGE 38

.._.....___

The Relative File Control Entry

FORMAT

SELECT file-name

ASSIGN TO RANDOM, <"external-file-name"}
{data-name-1 }

;ORGANIZATION IS RELATIVE

[;ACCESS MODE IS { SEGUENTIAL [,RELATIVE KEY IS data-name-2J}J

<<RANDOM}

<<DYNAMIC}

[;FILE STATUS IS data-name-3J.

,RELATIVE KEY IS data-name-2 >

}

The SELECT clause must be specified first in the file control
entry. The clauses which follow the SELECT clause may appear in
any order.

Each file described in the Data Divison must be named once and
only once as file-name in the FILE-CONTROL paragraph. Each file
specified in the file control entry must have a file description
entry in the Data Division.

The ASSIGN TO RANDOM clause specifies the association of the file
referenced by file-name to a storage medium.

External-file-name specifies the file access name and must be
enclosed in quotation marks. It can be from one to thirty
characters in length. A name longer than thirty characters will be
diagnosed as an error. The name may contain any characters
supported by the operating system for file access names.

Data-name-1 must be defined in the Data Division as a data item of
category alphanumeric and must not be defined in the Linkage
Section. Its value at the time of an OPEN statement execution will
be used as the file access name. Data-name-1 may be qualified.

PAGE 39

The ORGANIZATION IS RELATIVE clause specifies the
structure of a file. The file organization is established
time a file is created and cannot subsequently be changed.

logical
at the .

All records stored in a relative file are uniquely identified by
relative record numbers. The relative record number of a given
record specifies the record's logical ordinal position in the
f i 1 e. The first 1 og i ca 1 rec o-rd has a relative record number of one
(1), and subsequent logical records have relative record numbers
of 2, 3, 4, ... n.

The ACCESS MODE clause specifies the order in which records are to
be accessed.

When the
accessed
sequence
existing

ACCESS MODE IS SEGUENTIAL, records in the file are
in the sequence dictated by the file organization. This
is the order of ascending relative record numbers of

records in the file.

If the ACCESS MODE IS RANDOM, the value of the RELATIVE KEV data
item indicates the record to be accessed.

If a relative file is to be referenced by a START statement, the
RELATIVE KEV phrase must be specified for that file.

When the ACCESS MODE IS DYNAMIC, records in the file may
accessed sequentially and/or randomly.

.,,..___
be

Data-name-2 must
associated with
data-name-2 must
may be qualified.

not
that

be

be defined in a record description entry
file-name. The data item referenced by
defined as an unsigned integer. Data-name-2

If the ACCESS MODE clause is not specified, ACCESS MODE IS
SEGUENTIAL is implied.

When the FILE STATUS clause is specified, a value will
the operating system into the data item specified by
after the execution of every statement that references
either explicitly or implicitly. This value indicates
of execution of the statement.

be moved by
data-name-3
that file

that status

Data-name-3 must be defined in the Data Division as a
two-character data item of the category alphanumeric and must not
be defined in the File Section.

PAGE 40

~. The Indexed File Control Entry

FORMAT

SELECT file-name

ASSIGN TO RANDOM, {"external-file-name">
<data-name-1 }

[;ORGANIZATION IS INDEXED

[;ACCESS MODE IS {SEOUENTIAL>l

<RANDOM >

{DYNAMIC }

;RECORD KEY IS data-name-2

C; ALTERNATE RECORD KEY IS data-name-3 CWITH DUPLICATES]] ...

[;FILE STATUS IS data-name-4].

The SELECT clause must be specified first in the file control
entry. The clauses which follow the SELECT clause may appear in
anv order.

Each file described in the Data Division must be named once and
only once as file-name in the FILE-CONTROL paragraph.

Each file specified in the file control entry must have a file
description entry in the Data Division.

The ASSIGN TO RANDOM clause specifies the association of the file
referenced by file-name to a storage medium.

External-file-name specifies the file access name and must be
enclosed in quotation marks. It can be from one to thirty
characters in length. A name longer than thirty characters will be
diagnosed as an error. The name may contain any characters
supported by the operating system for file access names.

PAGE 41

Data-name-1 must be defined in the Data Division as a data item of ,,----.,,__
category alphanumeric and must not be defined in the Linkage
Section. Its value at the time of an OPEN statement execution will
be used as the file access name. Data-name-1 may be qualified.

The ORGANIZATION IS INDEXED clause specifies the logical structure
of a file. The file organization is established at the time a file
is created and cannot subsequently be changed.

The ACCESS MODE clause specifies the order in which records are to
be accessed.

When the ACCESS MODE IS SEOUENTIAL, records in the file are • accessed in the sequence dictated by the file organization. For
indexed files this se~uence is the order of ascending record key
values within a given key of reference.

If the ACCESS MODE IS RANDOM, the value of the RECORD KEV data
item indicates the record to be accessed.

When the ACCESS MODE IS DYNAMIC, records in the file may be
accessed sequentially and/or randomly.

If the ACCESS MODE clause
SEQUENTIAL is implied.

is not specified, ACCESS MODE IS

The RECORD KEY clause specifies the record key that is the prime
record key for the file. This prime record key provides an access
path to records in an indexed file.

An ALTERNATE RECORD KEY clause specifies a record key that is an
alternate record key for the file. This alternate record key
provides an alternate access path to records in an indexed file.

The data description of data-name-2 and data-name-3 as well as
their relative locations within a record must be the same as that
used when the file was created. The number of alternate keys for
the file must also be the same as that used when the file was
created.

The data items referenced by data-name-2 and data-name-3 must each
be defined as a data item of the category alphanumeric within a
record description entry associated with that file-name.

Neither data-name-2 nor data-name-3 can describe an item whose
size is variable.

PAGE 42

Data-name-3 cannot reference an item whose leftmost character
position corresponds to the leftmost character position of an item
referenced by data-name-2 or by any other data-name-3 associated
with this file.

Data-name-2 and data-name-3 may be ~ualified.

The WITH DUPLICATES phrase specifies that the value of the
associated alternate record key may be duplicated within any of
the records in the file. If the WITH DUPLICATES phrase is not
specified, the value of the associated alternate record key must
not be duplicated among any of the records in the file.

When the FILE STATUS clause is specified, a value will be moved by
the operating system into the data item specified by data-name-4
after the execution of every statement that references that file
either explicitly or implicitly. This value indicates the status
of execution of tha statement.

Data-name-4 must be defined in the Data Division as a
two-character data item of the category alphanumeric and must not
be defined in the File Section.

PAGE 43

The I-0 CONTROL Paragraph

The I-0 CONTROL paragraph specifies the memory area which is to be
shared by different files.

FORMAT

I -0-CONTROL.

C; SAME AREA FOR file-name-1 C, file-name-2J ... J ...

The I-0-CONTROL paragraph is optional.

The SAME AREA clause specifies that two or more files are to use
the same memory area during processing. The area being shared
includes all storage area assigned to the files specified;
therefore, it is not valid to have more than one of the files open
at the same time.

More than one SAME clause may be included in a program; however, a
file-name must not appear in more than one SAME AREA clause.

The files refarenced in the SAME AREA clause need not all have the
same organization or access.

PAQE 44

V

DATA DIVISION

PAGE 45

INTRODUCTION

The Data Division describes the data that the obJect program is to
accept as input, to manipulate, to create, or to produce as
output. Data to be processed falls into three categories:

That which is contained in files and
internal memory of the computer
areas.

enters or leaves the
from a specified area or

That which is developed internally
intermediate or working storage, or
format for output reporting purposes.

Constants which are defined by the user.

and
placed

placed into
into specific

The Data Division, which is one of the re~uired divisions in a
program, is subdivided into three sections:

The FILE SECTION defines the structure of data files. Each
file is defined by a file description entry and one or more
record descriptions. Record descriptions are written
immediately following the file description entry.

The WORKING-STORAGE SECTION describes records and
noncontiguous data items which are not part of external data
files but are developed and processed internally. It also
describes data items whose values are assigned in the source
program and do not change during the execution of the obJect
program.

The LINKAGE SECTION in a program is meaningful if and only if
the obJect program is to function under the control of a CALL
statement, and the CALL statement in the calling program
contains a USING phrase.

The Linkage Section is used for describing data that is
available through the calling program but is to be referred to
in both the calling and the called program. No space is
allocated in the program for data items referenced by
data-names in the Linkage Section of that program. Procedure
Division references to these data items are resolved at obJect
time by e~uating the reference in the called program to the
location used in the calling program. In the case of
index-names, no such correspondence is established.
Index-names in the called and calling program always refer to
separate indices.

PAGE 46

Data items defined in the Linkage Section of the called
program may be referenced within the Procedure Division of the
called program only if they are specified as operands of the
'usING phrase of the Procedure Division header or are
subordinate to such operands, and the obJect program is under
the control of a CALL statement that specifies a USING phrase.

FORMAT

DATA DIVISION.

[FILE SECTION.

[file-description-entry
Cree ord-d escr i pt ion-entry J ... J ... J

[WORKING-STORAGE SECTION.

C77-level-description-entry l ... J
[record-description-entry J

.~ [LINKAGE SECTION.

[77-level-description-entryl ... Jl
[record-description-entry l

PAGE 47

FILE SECTION

The File Section header is followed by a file description entry
consisting of a level indicator <FD>, a file-name and a series of
independent clauses. The FD clauses specify the size of the
logical and physical records, the presence or absence of label
records, the value of label items, and the names of the data
records which comprise the file. The entry itself is terminated by
a period.

In a COBOL program the file description entry <FD> represents the
highest level or organization in the File Section.

FORMAT

FILE SECTION.

[file-description-entry
[record-description-entry] ... l ...

PAGE 48

The File Description Entry

The File Description furnishes information concerning the physical
structure, identification, and record name pertaining to a given
file.

FORMAT

FD file-name

[;BLOCK CONTAINS tinteger-1 TOJ integer-2 {RECORDS }J

<CHARACTERS}

[;RECORD CONTAINS Cinteger-3 TOJ integer-4 CHARACTERSJ

;LABEL <RECORD IS > {STANDARD}

<RECORDS ARE} <OMITTED}

[;VALUE OF LABEL IS tliteral-1JJ

[;DATA <RECORD IS >

<RECORDS ARE>

data-name-1 C, data-name-2J ... l.

The level indicator FD identifies the beginning of a file
description and must precede the file-name.

The clauses which follow the name of the file are optional in many
cases, and their order of appearance is not significant.

One or more record description entries must follow the file
description entry.

A file description entry must end with a period separator.

PAGE 49

The BLOCK CONTAINS Clause

The BLOCK CONTAINS clause specifies the size of a physical record.

FORMAT

BLOCK CONTAINS Cinteger-1 TOJ integer-2 {RECORDS }

{CHARACTERS}

This clause is required except when:

A physical record contains only one complete logical record.

The device assigned to the rile has only one physical record
size.

The device assigned to the file has a standard record size,
although the device may have more than one physical record
size. In this case, the absence of this clause denotes the
standard physical record size.

The size of the physical record may be stated in terms or RECORDS,
unless one of the following situations exist, in which case the
RECORDS phrase must not be used:

In mass storage files where logical records may extend across
physical records.

The physical record contains padding.

Logical records are grouped in such a manner that an
inaccurate physical record size would be implied.

When the word CHARACTERS is specified, the physical record size is
specified in terms of the number of character positions required
to store the physical record, regardless of the types or
characters used to represent the items within the physical record.

If only integer-2 is shown, it represents the exact size of the
physical record. If integer-1 and integer-2 are shown, they refer
to the minimum and maximum size of the physical record,
respectively.

PAGE 50

The RECORD CONTAINS Clause

The RECORD CONTAINS clause specifies the size of the data records.

FORMAT

RECORD CONTAINS [integer-! TOJ integer-2 CHARACTERS

The size of each data record is completely defined with the record
description entry, therefore this clause is never req_uired. When
present, however, the following notes apply:

Integer-2 may not be used by itself unless all the data
records in the file have the same size. In this case integer-2
represents the exact number of characters in the data record.

If integer-! and integer-2 are both shown, they refer to the
minimum number of characters in the smallest size data record
and the maximum number of characters in the largest size data
record, respectively.

The size is specified in terms of the number of character
positions required to store the logical record, regardless of
the types of characters used to represent the items within the
logical record. The size of a record is determined by the sum
of the number of characters in all fixed length elementary
items plus any filler characters generated between elementary
items because of the SYNCHRONIZED clause.

PAGE 51

The LABEL RECORD Clause

The LABEL RECORD clause specifies whether labels are present.

FORMAT

LABEL {RECORD IS > {STANDARD}

{RECORDS ARE> {OMITTED}

This clause is required in every file description entry.

STANDARD specifies that labels exist for the file or the device to
which the file is assigned and the labels conform to the operating
system specification. STANDARD must be specified for files
assigned to a RANDOM device.

OMITTED specifies that no explicit labels exist for the file or
the device to which the file is assigned.

The VALUE OF Clause

The VALUE OF clause particularizes the description of an item in
the label records associated with a file.

FORMAT

VALUE OF LABEL IS literal-1

This clause is treated as commentary.

This clause must not be specified if OMITTED is specified in the
LABEL RECORDS clause.

PAGE 52

.~ The DATA RECORDS Clause

The DATA RECORDS clause serves only as documentation for the names
of data records with their associated file.

FORMAT

DATA <RECORD IS >

<RECORDS ARE>

data-name-1 C,data-name-2J ...

Data-name-1 and data-name-2 are the names of data records and must
have 01 level-number record descriptions, with the same name,
associated with them.

The presence of more than one data-name indicates that the file
contains more than one type of data record. These records may be
of differing sizes, different formats, etc. The order in which
they are listed is not significant.

Conceptually, all data records within a file share the same area.
This is in no way altered by the presence of more than one type of
data record within the file.

PAGE 53

WORKING-STORAGE SECTION

The Working-Storage Section is composed of the section header,
followed by data description entries for 77 level description
entries and/or record description entries.

The data-name of a 01-level data description entry in the
Working-Storage Section must be unique since it cannot be
qualified. Subordinate data-names need not be unique if they can
be made unique by qualification.

FORMAT

WORKING-STORAGE SECTION.

[77-level-description-entryJ
[record-description-entry J

LINKAGE SECTION

The structure of the Linkage Section is the same as for the
Working-Storage Section, beginning with a section header, followed
by data description entries for noncontiguous data items and/or
record description entries.

Each Linkage Section record-name and noncontiguous item name must
be unique within the called program since it cannot be qualified.

FORMAT

LINKAGE SECTION.

[77-level-description-entryJ
[record-description-entry J

PAGE 54

RECORD DESCRIPTION ENTRY

A record description entry consists of a set of data description
entries which describe the characteristics of a particular record.
Each data description entry consists of a level-number followed by
a data-name and a series of independent clauses, as required.

FORMAT

{data-description-entry}

Level-Numbers

The first data description of a record must have a level-number of
01 or 1, and must start in area A of a source line.

Each data description entry can be subdivided into multiple data
description entries, each having the same level-number; which must
be greater than the level-number of the subdivided entry, but less

-~ than 50. Level-numbers do not necessarily have to be successive.
Thus, a record is a hierarchy of data description entries.

Elementary Items

Any data description entry which is not further subdivided is
called an elementary item. A record itself may be an elementary
item, consisting of a single level 01 data description entry. A
subdivided data description entry with its subdivisions is called
a group and is non-elementary. Therefore, a group includes all
group and elementary items following it until a level-number less
than or equal to the level-number of that group is encountered.

Note
only
they
must
both.

that certain clauses of the data description entry may occur
in elementary items. They may not occur in 01-level entry as
may affect the subdivisions of that entry. An elementary item

have either a PICTURE clause or INDEX usage; it may not have

PAGE 55

77 LEVEL DESCRIPTION ENTRY

In the Working-Storage and Linkage Sections, a special
level-number of 77 can be used in data description entries which
are not subdivisions of other items, and are not themselves
subdivided. These data description entries specify noncontiguous
data items. Such a data description entry is elementary.

A 77 level description entry must contain a data name and either
the PICTURE clause or the USAGE IS INDEX clause, but cannot
contain an OCCURS clause. Other clauses are optional and can be
used to complete the description of the item if necessary.

FORMAT

data-description-entry

PAGE 56

THE DATA DESCRIPTION ENTRY

A data description entry specifies the characteristics of a
particular item of data.

FORMAT 1

level-number {data-name-1}
<FILLER }

[;REDEFINES data-name-2J

[; {PICTURE} IS character-string]

-CPIC }

[; [USAGE ISJ {COMPUTATIONAL }

{COMP }

{COMPUTATIONAL-1}

{COMP-1 }

{COMPUTATIONAL-3}

<COMP-3

{DISPLAY

<INDEX

}

}

} J

[; [SIGN ISJ {TRAILING} [SEPARATE CHARACTERJJ

[;{OCCURS {integer-1 TIMES }
------ {integer-1 TO integer-2 TIMES DEPENDING ON data-name-3}

[INDEXED BY index-name-1 C, index-name-2l ... JJ

[;{SYNCHRONIZED} CLEFT l

{SYNC } CRIGHTJJ

PAGE 57

[;{JUSTIFIED> RIGHT]

{JUST }

[;BLANK WHEN ZERO]

[;VALUE IS literal]

FORMAT 2

66 data-name-1; RENAMES data-name-2 [{THROUGH} data-name-3].

{THRU }

FORMAT 3

88 condition-name; {VALUE IS > literal-1 [{THROUGH> literal-2]

{VALUES ARE}

C, literal-3 [{THROUGH} literal-4ll

{THRU }

{THRU }

The clauses may be written in any order with two exceptions:

the data-name-1 or FILLER clause must immediately follow the
level-number;

the REDEFINES clause, when used, must immediately follow the
data-name-1 clause.

The PICTURE clause must be specified for every elementary item
except an index data item, in which case use of this clause is
prohibited.

The words THRU and THROUGH are equivalent.

The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO,
must not be specified except for an elementary data item.

PAGE 58

Format 3 is used for each condition-name. Each condition-name
requires a separate entry with level-number 88. Format 3 contains
the name of the condition and the value, values, or range of
values associated with the condition-name. The condition-name
entries for a particular conditional variable must follow the
entry describing the item with which the condition-name is
associated. A condition-name can be associated with any data
description entry which contains a level-number except the
following:

Another condition-name.

A group containing items
JUSTIFIED, SYNCHRONIZED or
DISPLAY>.

An index data item.

A 1 eve 1 66 item.

with
USAGE

descriptions
(other than

including
USAGE IS

Each data description entry must end with a period separator.

PAGE 59

The Level-Number

The level-number shows
record. In addition,
storage items, linkage
clause.

FORMAT

level-number

the hierarchy of data within a logical
it is used to identify entries for working
items, condition-names and the RENAMES

A level-number is required as the first element in each data
description entry.

Data description entries subordinate to an FD entry must have
level-numbers with the values 01 through 49, 66 or 88.

Data description entries in the Working-Storage Section and
Linkage Section must have level-numbers with the values 01 through
49, 66, 77 or 88.

The level-number 01 identifies the first entry in each record~
description.

Level-number 66 is assigned to identify RENAMES entries.

Level-number 77 is assigned to identify noncontiguous working
storage data items and noncontiguous linkage data items.

Level-number 88 is assigned to identify condition-names associated
with a conditional variable.

Multiple level 01 entries subordinate to any given level indicator
FD, represent implicit redefinitions of the same area.

PAGE 60

The Data-Name or FILLER Clause

A data-name specifies the name of the data being described. The
word FILLER specifies an elementary item of the logical record
that cannot be referred to explicity.

FORMAT

-Cd a ta-name}
<FILLER }

A data-name or the key word FILLER must be the first word
following the level-number in each data description entry.

The key word FILLER may be used to name an elementary item in a
record. Under no circumstances can a FILLER item be referred to
explicitly. However, the key word FILLER may be used as a
conditional variable because such use does not re~uire explicit
reference to the FILLER item, but to its value.

The key word FILLER may not be used in data description entries
r--- with a 1, 01, 77, or 88 1 eve 1-numb er.

PAGE 61

The REDEFINES Clause

The REDEFINES clause allows the same computer storage area to be
described by diTferent data description entries.

FORMAT

level-number data-name-1; REDEFINES data-name-2

NOTE: Level-number, data-name-1 and the semicolon are shown in
the above for mat to improve clarity. Leve 1-number and
data-name-1 are not part of the REDEFINES clause.

The REDEFINES clause,
data-name-1.

when specified, must immediately follow

The level-numbers of data-name-1 and data-name-2 must be identical
but must not be 66 or 88.

This clause must not be used in level 01 entries in the File
Section. ~

The data description entry for data-name-2 cannot contain a
REDEFINES clause. Data-name-2 may be subordinate to an entry which
contains a REDEFINES clause. The data description entry for
data-name-2 cannot contain an OCCURS clause. However, data-name-2
may be subordinate to an item whose data description entry
contains an OCCURS clause. In this case, the ref er enc e to
data-name-2 in the REDEFINES clause may not be subscripted or
indexed. Neither the original definition nor the redefinition can
include an item whose size is variable as defined in the OCCURS
clause.

No entry having a level-number numerically lower than the
level-number of data-name-2 and data-name-1 may occur between the
data description entries of data-name-2 and data-name-1.

Redefinition starts at data-name-2 and ends when a level-number
less than or equal to that of data-name-2 is encountered.

When the level-number of data-name-1 is other than
specify the same number of character positions that
referenced by data-name-2 contains. It is important
that the REDEFINES clause specifies the redefinition
area, not of the data items occupying the area.

PAGE 62

01, it must
the data item

to observe
of a storage

Multiple redefinitions of the same character positions are
permitted. The entries giving the new descriptions of the
character positions must follow the entries defining the area
being redefined without intervening entries that define new
character positions. Multiple redefinitions of the same character
positions must all use the data-name of the entry that originally
defined the area.

The entries giving the new description of the character positions
must not contain any VALUE clauses except in condition-name
entries.

Multiple level 01 entries subordinate to any given level indicator
represent implicit redefinitions of the same area.

PAGE 63

The PICTURE Clause

The PICTURE clause describes the general characteristics and
editing re~uirements of an elementary item.

FORMAT

{PICTURE} IS character-string

{PIC }

A PICTURE clause can be specified only at the elementary item
1 eve 1.

A character-string consists of certain allowable
characters in the COBOL character set used
allowable combinations determine the category of
item.

combinations of
as symbols. The

the elementary

The maximum number of characters allowed in the character-string
is 30.

The PICTURE clause must be specified for every elementary item
except an index data item, in which case use of this clause is
prohibited.

PIC is an abbreviation for PICTURE.

There are five categories of data that can be described with a
PICTURE clause:

alphabetic
numeric
alphanumeric
alphanumeric edited
numeric edited

To define an item as alphabetic:

Its PICTURE character-string can only contain the symbols 'A',
and/or 'B'.

Its contents when represented in standard data format must be
any combination of the twenty-six <26) letters of the Roman
alphabet and the space from the COBOL character set.

PAGE 64

To define an item as numeric:

Its PICTURE character-string can only contain the symbols '9',
'P', 'S', and 'V'. The number of digit positions that can be
described by the PICTURE character-string must range from 1 to
18 inclusive; and

If unsigned, its contents when represented in standard data
format must be a combination of the Arabic numerals '0', '1 ',
'2 ', '3 ', '4 ', '5 ', '6 ', '7 ', '8 ', '9 '; if signed, the it em
may also contain a '+', '-', or other representation of an
operational sign.

To define an item as alp~anumeric:

Its PICTURE character-string is restricted to certain
combinations of the symbols 'A', 'X', '9', and the item is
treated as if the character-string contained all X's. A
PICTURE character-string which contains all A's or all 9's
does not define an alphanumeric item; and

Its contents, when represented in standard data format, are
allowable characters in the computer's character set.

,,,..---.. To define an item as alphanumeric edited:

Its PICTURE character-string is
combinations of the following symbols:
'0', and '/' <stroke);

restricted
'A', 'X',

to certain
'9', 'B',

The character-string must contain at least one 'B' and at
least one 'X' or at least one '0' <zero) and at least one 'X'
or at least one '/' (stroke> and at least one 'X'; or

The character-string must contain at least one '0' (zero) and
at least one 'A' -or at least one '/' (stroke) and at least one
'A'; and

The contents when represented in standard data format are
allowable characters in the computer's character set.

PAGE 65

To define an item as numeric edited:

Its PICTURE character-string is restricted to certain
combinations of the following symbols: 'B', '/' (stroke>, 'P',
'V', 'Z', '0', '9', ', ', '. ', '*', '-', '+', 'CR', 'DB', and
the currency symbol. The allowable combinations are determined
from the order of precedence of symbols and the editing rules;
and

The number of digit positions that can be represented in the
PICTURE character-string must range from 1 to 18 inclusive;
and

The character-string
(stroke>, 'Z', '*',
currency symbol.

must contain at least one '0',
I+ I I I I

I I
I f

I
I_ I I 'CR',

'BI I
'DB',

, I I

or

The contents of the character positions of these symbols that
are allowed to represent a digit in standard data format, must
be one of the numerals.

The size of an elementary item, where size means the number of
character positions occupied by the elementary item in standard
data format, is determined by the number of allowable symbols that
represent character positions. An integer which is enclosed in
parentheses following the symbols 'A', ', ', 'X', '9', 'P', 'Z',
'*', 'B', '/' <stroke>, '0', '+', '-', or the currency symbol ~
indicates the number of consecutive occurrences of the symbol.
Note that the following symbols may appear only once in a given
PICTURE: 'S', 'V', '. ', 'CR', and 'DB'.

The functions of the symbols used to describe an elementary item
are explained as follows:

Each 'A'
position
space.

in the character-string represents a character
which can contain only a letter of the alphabet or a

Each 'B' in the character-string represents a character
position into which the space character will be inserted.

PAGE 66

Each 'P' indicates an assumed decimal scaling position and is
used to specify the location of an assumed decimal point when
the point is not within the number that appears in the data
item. The scaling position character 'P' is not counted in the
size of the data item. Scaling position characters are counted
in determining the maximum number of digit positions (18) in
numeric edited items or numeric items. The scaling position
character 'P' can appear only to the left or right as a
continuous string of 'P's within a PICTURE description; since
the scaling position character 'P' implies an assumed decimal
point <to the left of 'P's if 'P's are leftmost PICTURE
characters and to the right if 'P's are rightmost PICTURE
characters), the assumed d ec ima 1 point symb o 1 'V' is redundant
as either the leftmost or rightmost character within such a
PICTURE description. The character 'P' and the insertion
character ' ' (period> cannot both occur in the same PICTURE
character-s.tring. If, in any operation involving conversion of
data from one form of internal representation to another, the
data item beinD converted is described with the PICTURE
character 'P', each digit position described by a 'P' is
considered to contain the value zero, and the size of the data
item is considered to include the digit positions so
described.

The letter 'S' is used in a character-string to indicate the
presence, but neither the representation nor, necessarily, the
position of an operational sign; it must be written as the
1 eftmost character in the PICTURE. The 'S' is counted in
determining the size (in terms of standard data format
characters> of elementary items having DISPLAY or
COMPUTATIONAL usage.

The 'V' is used in a character-string to indicate the location
of the assumed decimal point and may only appear once in a
character-string. The 'V' does not represent a character
position and therefore is not counted in the size of the
elementary item. When the assumed decimal point is to the
right of the rightmost symbol in the string the 'V' is
redundant.

Each 'X' in the character-string is used to represent a
character position which contains any allowable character from
the computer's character set.

Each 'Z' in a character-string may only be used to represent
the leftmost leading numeric character positions which will be
replaced by a space character when the contents of that
character position is zero. Each 'Z' is counted in the size of
the item.

PAGE 67

Each '9' in the character-string represents a
position which contains a numeral and is counted in
of the item.

character ~
the size

Each '0' <zero) in the character-string represents a character
position into which the numeral zero will be inserted. The '0'
is counted in the size of the item.

Each '/' (stroke) in the character-string represents a
character position into which the stroke character will be
inserted. The '/' (stroke> is counted in the size of the item.

Each I , (comma) in the character-string represents a ,
character po!iition into which the character , I will be ,
inserted. This character position is counted in the size of
the item. The insertion character I I must not be the last ,
character in the PICTURE character-string.

When the character ' ' (period) appears in the
character-string it is an editing symbol which represents the
decimal point for alignment purposes and in addition,
represents a character position into which the character ' '
will be inserted. The character '.' is counted in the size of
the item. For a given program the functions of the period and
comma are exchanged if the clause DECIMAL-POINT IS COMMA is
stated in the SPECIAL-NAMES paragraph. In this exchange the
rules for the period apply to the comma and the rules for the
comma apply to the period wherever they appear in a PICTURE
clause. The insertion character ' ' must not be the last
character in the PICTURE character-string.

+, -, CR, DB. These symbols are used as editing sign control
symbols. When used, they represent the character position into
which the editing sign control symbol will be placed. The
symbols are mutually exclusive in any one character-string and
each character used in the symbol is counted in determining
the size of the data item.

Each '*' (asterisk) in the character-string represents a
leading numeric character position into which an asterisk will
be placed when the contents of that position is zero. Each '*'
is counted in the size of the item.

The asterisk when used as the zero suppression symbol and the
clause BLANK WHEN ZERO may not appear in the same entry.

PAGE 68

The currency symbol in the character-string represents a
character position into which a currency symbol is to be
placed. The currency symbol in a character-string is
represented by either the currency sign or by the single
character specified in the CURRENCY SIGN IS clause in the
SPECIAL-NAMES paragraph. The currency symbol is counted in the
size o, the item.

There are two general methods of performing editing in the PICTURE
clause, either by insertion or by suppression and replacement.
There are four types of insertion editing available:

Simple insertion
Special insertion
Fixed insertion
Floating insertion

There are two types o, suppression and replacement editing:

Zero suppression and replacement with spaces
Zero suppression and replacement with asterisks

The type o, editing which may be performed upon an item is
dependent upon the category to which the item belongs. The
following table specifies which type of editing may be performed
upon a given category:

I CATEGORY TYPE OF EDITING
1--1
I Alphabetic Simple insertion 'B' only
:---~------------J
Numeric

Alphanumeric

Alphanumeric
Edited

!Numeric
IEdited

None

None

Simple insertion '0', 'B',
and '/' <stroke)

All, subJect to rules below

I

Floating insertion editing and editing by zero suppression and
replacement are mutually exclusive in a PICTURE clause. Only one
type of replacement may be used with zero suppression in a PICTURE
clause.

PAGE 69

Simple Insertion Editing

The ',' (comma), 'B' (space), '0', <zero), and '/' <stroke) are
used as the insertion characters. The insertion characters are
counted in the size of the item and represent the position in the
item into which the character will be inserted.

Special Insertion Editing

The ' ' (period) is used as the insertion character. In addition
to being an insertion character it also represents the decimal
point for alignment purposes. The insertion character used for the
actual decimal point is counted in the size of the item. The use
of the assumed decimal point, represented by the symbol 'V' and
the actual decimal point, represented by the insertion character,
in the same PICTURE character-string is disallowed. The result of
special insertion editing is the appearance of the insertion
character in the item in the same position as shown in the
character-string.

Fixed Insertion Editing

The currency symbol and the editing sign control symbols, '+',
'-', 'CR', 'DB', are the insertion characters. Only one currency
symbol and only one of the editing sign control symbols can be
used in a given PICTURE character-string. When the symbols 'CR' or
'DB' are used they represent two character positions in
determining the size of the item and they must represent the
rightmost character positions that are counted in the size of the
item.

The symbol '+' or '-', when used, must be either the leftmost or
rightmost character position to be counted in the size of the
item.

The currency symbol must be the leftmost character position to be
counted in the size of the item except that it can be preceded by
either a '+' or a ,_, symbol.

Fixed insertion editing results in the
occupying the same character position in the
occupied in the PICTURE character-string.

PAGE 70

insertion character
edited item as it

Editing sign control symbols produce the following results
depending upon the value of the data item:

EDITING SYMBOL IN
PICTURE

CHARACTER-STRINQ

+

CR
DB

Floating Insertion Editing

RESULT
--------------------------------:

DATA ITEM
POSITIVE OR ZERO I

DATA ITEM
NEGATIVE

------------------,-------------:
+

space
2 spaces
2 spaces

CR
DB

Th• currency symbol and editing sign control symbols, '+' or '-',
are the floating insertion characters and as such are mutually
exclusive in a given PICTURE character-string.

/.,.-- Floating insertion editing is indicated in a PICTURE
character-string by using a string of at least two of the floating
insertion characters. This string of floating insertion characters
may contain any of the fixed insertion symbols or have fixed
insertion characters immediately to the right of this string.
These simple insertion characters are part of the floating string.

The leftmost character of the floating insertion string represents
the leftmost limit of the floating symbol in the data item. The
rightmost character of the floating string represents the
rightmost limit of the floating symbols in the data items.

The second floating character from the left represents the
leftmost limit of the numeric data that can be stored in the data
item. Nonzero numeric data may replace all the characters at or to
the right of this limit.

In a PICTURE character-string, there are only two ways of
representing floating insertion editing. One way is to represent
any or all of the leading numeric character positions on the left
of the d~cimal point by the insertion character. The other way is
to represent all of the numeric character positions in the PICTURE
character-string by the insertion character.

PAGE 71

If the insertion characters are only to the left of the decimal~
point in the PICTURE character-string, the result is that a single
floating insertion character will be placed into the character
position immediately preceding either the decimal point or the
first nonzero digit in the data represented by the insertion
symbol string, whichever is farther to the left in the PICTURE
character-string. The charucter positions preceding the insertion
character are replaced with spaces.

If all numeric character positions in the PICTURE character-string
are represented by the insertion character, the result depends
upon the value of the data. If the value is zero the entire data
item will contain spaces. If the value is not zero, the result is
the same as when the insertion character is only to the left of
the decimal point.

To avoid truncation, the minimum size of the PICTURE
character-string for the receiving data item must be the number of
characters in the sending data item, plus the number of
non-floating insertion characters being edited into the receiving
data item, plus one for the floating insertion character.

Zero Suppression Editing

The suppression of leading zeroes in numeric character positions
is indicated by the use of the alphabetic character 'Z' or the
character '*' (asterisk) as suppression symbols in a PICTURE
character-string. These symbols are mutually exclusive in a given
PICTURE character-string. Each suppression symbol is counted in
determining the size of the item. If 'Z' is used the replacement
character will be the space and if the asterisk is used, the
replacement character will be '*'·

In a PICTURE character-string, there are only two ways of
representing zero suppression. One way is to represent any or all
of the leading numeric character positions to the left of the
decimal point by suppression symbols. The other way is to
represent all of the numeric character positions in the PICTURE
character-string by suppression symbols.

If the suppression symbols appear only to the left of the decimal
point, any leading zero in the data which corresponds to a symbol
in the string is replaced by the replacement character.
Suppression terminates at the first nonzero digit in the data
represented by the suppression symbol string or at the decimal
point, whichever i• encountered first.

PAGE 72

If all numeric character positions in the PICTURE character-string
are represented by suppression symbols and the value of the data
is not zero the result is the same as if the suppression
characters were only to the l•ft of the decimal point. If the
value is zero and the suppression symbol is 'Z', the entire data
item will be spaces. If the value is zero and the suppression
symbol is '*', the data item will be all '*' except for the actual
d e c i ma 1 p o i n t.

The symbols '+', '-', '*'• 'Z', and the curl'ency symbol, when used
as floating replacement characters, are mutually exclusive within
a given chal'acter-string.

The picture precedence chart shows the order of precedence when
using characters as symbols in a character-string. An 'X' at an
intersection indicates that the symbol(s) at the top of the column
may precede, in a given c harac ter-str i ng, the symbol< s > at the
left of the row. Arguments appearing in braces indicate that the
symbols are mutually exclusive. The currency symbol is indicated
bv the symbol 'cs'.

At least one of the symbols
least two of the symbols
PICTURE string.

, A,,
'+II

IX , '
I_ I I

'Z', '9', or '*', or at
or 'cs' must be present in a

Nonfloating insertion symbols '+' and '-', floating insertion
symbols 'Z', '*', '+', '-', and 'cs', and other symbol 'P' appear
twice in the PICTURE character precedence chart. The leftmost
column and uppermost row for each symbol represents its use to the
left of the decimal point position. The second appearance of the
symbol in the chart represents its use to the right of the decimal
point position.

PAQE 73

--~
\1st

\Sym-
2nd\bol
Sym-\

bol \

Non-Floating
Insertion Symbols

Floating
Insertion Symbols

Other
Symbols

-------------------------:--------------------- -----------
B101/l 'L l{+}l{+}l{CR}ICSI-CZ}l{Z}l{+}l{+}lCSICS 91AISIVIPIP

IX: : I I

------- -------------------------1--------------------- -----------
B XIXIXIXIXI X I : XI X I X I X I X : XI X XIXI IXI IX

----- -------------------------:--------------------- -----------
0 x:x1x:x:x1 x : : X X I X I X I X I XI X XIXI IXI IX

N -----
0 I XIXIXIXIXl X I I X X I X I X I X I XI X XIXI IXI IX
N -----

'F XIXIXIXIXl X I I X X I X I X I X I XI X XI I IXI IX
L ----- ---------~-----------
0 XIXIXIXI I X I I X x I I X I I XI XI I I I I
A-----
T + - I I I I I I I I I I

I I I I f I I I I I

I----- -------------------------:--------------------- -----------
N + - XIXIXIXIXl I XI X I X I I XI X XI I IXIXIX
Gl----- -------------------------1--------------------- -----------

CR DB x:x:x:x:x: I XI X I X I l XI X XI I IXIXIX

----- -------------------------:--------------------- -----------
cs I I I : I X I .,

I
I t t t t
I I I I I

- ----- -------------------------:--------------------- -----------
F
L
0
A
T
I
N
G

-

0

Z * XIXIXIXI I X I I X X I 111:1~

z * -----
+ -

+ -

cs

cs

9

A X

x:x:x1x1x1 x 1 I X X I X I I I I IX I IX

------------------------- ---------------------1-----------
XIX IX IX I I I X I X I I t I I I I

I I I I I I

------------------------- ---------------------:-----------
XIXIXIXIXI I X I X I X I I I I IX I IX

------------------------- ---------------------:-----------
XIXIXIXI I X I I XI I I t t I t

I I I I I I

-------------------------:---------------------·-----------
XIXIXIXIXI X I I XIX I I IX I IX

-------------------------1--------------------- -----------
XIXIXIXIXI X I I XI X I I X I I XI XIXIXIXI IX

-------------------------:--------------------- -----------
XIXIXI I I XIXI I I I

-------------------------:--------------------- -----------
Tl S I I I I I I I I I t I

I I I I I

Hl-----1-------------------------
EI V IXIXIXlXl l X I l X X : I X I I XI X l IX l l XI
Rl-----1-------------------------

p IXIXIXIXI I X I I X X I I X I I XI IX I IX I IX l

1-----:------------------------- ---------------------:-----------
P I I I I I I X I I X I I IX IX l IX

PICTURE Character Precedence Chart

PAGE 74

The USAGE Clause

The USAGE clause specifies the format of a data item in the
computer storage.

FORMAT

[USAGE ISJ <COMPUTATIONAL }

<COMP }

<COMPUTATIONAL-1}

<COMP-1 }

<COMPUTATIONAL-3}

<COMP-3

<DISPLAY

<INDEX

}

}

}

This clause specifies the manner in which a data item is
represented in the storage of a computer. It does not affect the
use of the data item, although the specifications for some
statements in the Procedure Division may restrict the USAGE clause
of the operands referenced.

The USAGE clause can be written at any 1 eve 1. If the USAGE c 1 a use
is written at a group level, it applies to each ~lementary item in
the group. The USAGE clause of an elementary item cannot
contradict the USAGE clause of a group to which the item belongs.

If the USAGE clause is not specified for an elementary item, or
for any group to which the item belongs, the usage is implicitly
DISPLAY.

A COMPUTATIONAL (COMPUTATIONAL-1, COMPUTATIONAL-3) item represents
a value to be used in computations and must be numeric. If a group
is described as COMPUTATIONAL, then the elementary items in the
group are COMPUTATIONAL. The group itself is not COMPUTATIONAL
<cannot be used in computations. >

PAGE 75

The format of a COMPUTATIONAL item is one decimal digit per
character position (hexadecimal 00-09). If an '$' appears in the
PICTURE character-string, a trailing byte contains the sign with
> 2B being generated for positive and> 2D being generated for
negative. COMPUTATIONAL items will be treated as negative if the
sign character is > 2D; otherwise they will be considered
positive.

The format of a COMPUTATIONAL-1 item <abbreviated COMP-1> is 16
bit two's complement signed binary, independent of the number of
nines or appearance of 'S' in the PICTURE character-string. The
number of nines is significant when the value is converted to
decimal during data manipulation. The value of a COMPUTATIONAL-!
item ranges between -32768 and 32767.

The format of a COMPUTATIONAL-3 item is two decimal digits per
character position.

The PICTURE character-string of a COMPUTATIONAL, COMPUTATIONAL-!
or COMPUTATIONAL-3 item can contain only '9's, the operational
sign character 'S', the implied decimal point character 'V', one
or more 'P's. Since a COMPUTATIONAL-1 item must have zero scale it
cannot contain any 'P's in its PICTURE character string and if it
has a 'V' in its PICTURE character-string the 'V' must be the
rightmost character.

The USAGE IS DISPLAY clause indicates that the format of the data
is ASCII.

An elementary item described with the USAGE IS INDEX clause is
called an index data item and contains a value which must
correspond to an occurrence number of a table element. If a group
item is described with the USAGE IS INDEX clause the elementary
items in the group are all index data but the group item name
cannot be used in the SET statement or in a relation condition.

An index data item can be referenced explicitly only in a SET
statement or a relation condition.

The initial value of an index item is undefined.

The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE and BLANK WHEN ZERO
clauses cannot be used to describe group or elementary items
described with the USAGE IS INDEX clause.

An index data item can be part of a group which is referred to in
a MOVE or input-output statement, in which case no conversion will
take place.

The external and internal format of an index data item is the same ~
as a COMPUTATONAL-1 item.

PAGE 76

The SIQN Clause

The SIGN clause specifies the position and the mode of
representation of the operational sign when it is necessary to
describe these properties explicitly.

FORMAT

[SIGN IS] <TRAILING> [SEPARATE CHARACTER]

The optional SIGN clause, if present, specifies the position and
the mode of representation of the operational sign for the numeric
data description entry to which it applies, or for each numeric
data description entry subordinate to the group to which it
applies. The SIGN clause applies only to numeric data description
entries whose PICTURE contains the character 'S'.

The operational sign will be presumed to be the trailing character
position of the elementary numeric data item; this character
position is not a digit position.

The letter 'S' in a PICTURE character-string is counted in
determining the size of the item <in terms of standard data format
characters>.

The operational signs for positive and negative are the standard
data format characters '+' and '-', respectively.

The numeric data description entries to which the SIGN clause
applies must be described as usage is DISPLAY.

At most one SIGN clause may apply to any given numeric data
description entry.

PAGE 77

The OCCURS Clause

The OCCURS clause eliminates the need
repeated data items and supplies
application of subscripts or indices.

FORMAT 1

OCCURS integer-1 TIMES

for separate entries for
information required for the

[INDEXED BY index-name-1 t, index-name-2l ... l

FORMAT 2

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1

[INDEXED BY index-name-1 t, index-name-2] ... J

The OCCURS clause is used in defining tables and other homogeneous
sets of repeated data items. Whenever the OCCURS clause is used, ~
the data-name which is the subJect of this entry must be either
subscripted or indexed whenever it is referred to in a statement.
Further, if the subJect of this entry is the name of a group item,
then all data-names belonging to the group must be subscripted or
indexed whenever they are used as operands, except as the obJect
of a REDEFINES clause.

The OCCURS clause cannot be specified in a data description entry
that:

Has an 01, 66, 77, or an 88 level-number.

Describes an item whose size is variable. The size of an item
is variable if the data description of any subordinate item
contains Format 2 of the OCCURS clause.

Except for the OCCURS clause itself, all data description clauses
associated with an item whose description includes an OCCURS
clause apply to each occurrence of the item described.

PAGE 78

The number of occurrences of the subJect entry is defined as
,,-.., f O 11 DUIS:

In Format 1, the value of integer-1 represents the exact
number of occurrences.

In Format 2, the current value of the data item referenced by
data-name-1 represents the number of occurrences.

This format specifies that the subJect of this entry has a
variable number of occurrences. The value of integer-2
represents the maximum number of occurrences and the value
of integer-1 represents the minimum number of occurrences.
This does not imply that the length of the subJect of the
entry is variable, but that the number of occurrences is
variable.

The value of the data item referenced by data-name-1 must
fall within the range integer-1 through integer-2.
Reducing the value of the data item referenced by
data-name-1 makes the contents of data items, whose
occurrence numbers now exceed the value of the data item
referenced by data-name-1, unpredictable.

Where both integer-! and integer-2 are used, the value of
integer-1 must be less than the value of integer-2.

The data description of data-name-1 must describe a
positive integer. Data-name-1 may be qualified.

A data description entry that contains Format 2 of the
OCCURS clause may only be followed, within that record
description, by data description entries which are
subordinate to it.

When a group item, having subordinate to it an entry that
specifies Format 2 of the OCCURS clause, is referenced, only that
part of the table area that is specified by the value of
data-name-1 will be used in the operation.

An INDEXED BY phrase is required if the subJect of this entry, or
an entry subordinate to this entry, is to be referred to by
indexing. The index-name identified by this clause is not defined
elsewhere since its allocation and format are dependent on the
hardware, and not being data, cannot be associated with any data
hierarchy.

PAGE 79

The SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment of an elementary
item on an even byte boundary.

FORMAT

{SYNCHRONIZED} CLEFT J

<SYNC } CRIGHTJ

This clause specifies that the subJect data item is to be aligned
in the computer such that no other data item occupies any of the
character positions between the leftmost and rightmost natural.
boundaries delimiting this data item. If the number of character
positions re~uired to store this data item is less than the number
of character positions between those natural boundaries, the
unused character positions (or portions thereof) must not be used
for any other data item. Such unused character positions, however,
are included in:

The size of any group item(s) to which the elementary item /....___,
belongs; and

The character positions redefined when this data item is the
obJect of a REDEFINES clause.

SYNCHRONIZED LEFT specifies that the elementary item is to be
positioned such that it will begin at the left character position
of the next available even byte. If the data item contains an odd
number of bytes, one trailing byte of FILLER is implied.

SYNCHRONIZED not followed by either RIGHT or LEFT is e~uivalent to
the clause SYNCHRONIZED LEFT.

SYNC is an abbreviation for SYNCHRONIZED.

This clause may only appear with an elementary item.

SYNCHRONIZED RIGHT specifies that the elementary item is to be
positioned such that it will terminate on the right character
position of an integral even byte boundary. If the data item
contains an odd number of bytes, a leading byte of FILLER is·
implied.

PAGE 80

Whenever a SYNCHRONIZED item is referenced in the source program,
the original size of the item, as shown in the PICTURE clause, is
used in determining any action that depends on size, such as
Justifiction, truncation or overflow.

If the data description of an item contains the SYNCHRONIZED
clause and an operational sign, the sign of the item appears in
the normal operational sign position, regardless of whether the
item is SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT.

When the SYNCHRONIZED clause is specified in a data description
entry of a data item that also contains an OCCURS clause, or in a
data description entry of a data item subordinate to a data
description entry that contains an OCCURS clause, then:

Each occurrence of the data item is SYNCHRONIZED.

Any implicit FILLER generated for other data items within that
same table are generated for each occurrence of those data
items.

Records of a file and index data items are automatically
synchronized left. Records and noncontiguous data-items in
working-storage begin on the next available byte unless the first
elementary item is synchronized.

The format on external media of records or groups containing
elementary items described with the SYNCHRONIZED clause includes
any implied FILLER bytes.

When the data item preceding a data item described with the
SYNCHRONIZED clause does not terminate on a byte whose address is
even, then one implied FILLER byte is generated. Such
automatically generated FILLER positions are included in:

The size of any group to which the FILLER item belongs; and

The number of character positions allocated when the group
item of which the FILLER item is a part appears as the obJect
of a REDEFINES clause.

PAGE 81

The JUSTIFIED Clause

The JUSTIFIED clause specifies nonstandard positioning of data
within a receiving data item.

FORMAT

{JUSTIFIED} RIGHT

{JUST }

When a receiving data item is described with the JUSTIFIED clause
and the sending data item is larger than the receiving data item,
the leftmost characters are truncated. When the receiving data
item is described with the JUSTIFIED clause and it is larger than
the sending data item, the data is aligned at the rightmost
character position in the data item with space-fill for the
leftmost character positions.

When the JUSTIFIED clause is omitted, the standard rules for
aligning data within an elementary item apply.

The JUSTIFIED clause cannot be specified for any data item
described as numeric or for which editing is specified.

The JUSTIFIED clause can be specified only at the elementary item
1 eve 1.

JUST is an abbreviation for JUSTIFIED.

PAGE 82

The BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause permits the blanking of an item when
its value is zero.

FORMAT

BLANK WHEN ZERO

The BLANK WHEN ZERO clause can be used only for a~ elementary item
whose PICTURE is specified as numeric or numeric edited.

The BLANK WHEN ZERO clause cannot appear in the same entry with a
PICTURE clause having an asterisk as the zero suppression symbol.

When the BLANK WHEN ZERO clause is used, the item will contain
nothing but spaces if the value of the item is zero.

When the BLANK WHEN ZERO clause is used for an item whose PICTURE
is numeric, the category of the item is considered to be numeric
edited.

PAGE 83

The VALUE IS Clause

The VALUE IS clause defines the initial value of working storage
items, and the values associated with a condition-name.

FORMAT 1

VALUE IS literal

FORMAT 2

<VALUE IS } literal-1 [{THROUGH} literal-2l

<VALUES ARE} <THRU }

[, literal-3 [{THROUGH} literal-4ll ...

<THRU >

The VALUE clause cannot be stated for any items whose size is
variable.

A signed numeric literal must have associated with it a signe~
numeric PICTURE character-string.

All numeric literals in a VALUE clause of
value which is within the range of values
clause, and must not have a value which
of nonzero digits. Nonnumeric literals in
item must not exceed the size indicated by

The words THRU and THROUGH are equivalent.

an item must have a
indicated by the ~ICTURE
would re~uire truncation
a VALUE clause of an

the PICTURE clause.

The VALUE clause must not conflict with other clauses in the data
description of the item or in the data description within the
hierarchy of the item. The following rules apply:

1. If the category of the item is numeric, all literals in the
VALUE clause must be numeric. If the literal defines the value
of a working storag~ item, the literal is aligned in the data
item according to the standard alignment rules.

PAGE 84

2. If the category of the item is alphabetic, alphanumeric,
alphanumeric edited or numeric edited, all literals in the
VALUE clause must be nonnumeric literals. The literal is
aligned in the data item as if the data item had been
described as alphanumeric. Editing characters in the PICTURE
clause are included in determining the size of the data item
but have no effect on initialization of the data item.
Therefore, the VALUE of an edited item is presented in an
edited form.

Initialization takes place independent of any BLANK WHEN ZERO or
JUSTIFIED clause that may be specified.

A figurative constant may be substituted in both Format l and
Format 2 wherever a literal is specified.

Condition-Name Rules

In a condition-name entry, the VALUE clause is required. The VALUE
clause and the condition-name itself are the only two clauses
permitted in the entry. The characteristics of a condition-name
are implicitly those of its conditional variable .

. ~ Format 2 can be used only in connection with condition-names.
Wherever the THROUGH (THRU) phrase is used, litel'al-1 must be less
than literal-2, literal-3 less than literal-4, etc.

Data Description Entries Other Than Condition-Names

Rules governing the use of the VALUE clause differ with the
respective sections of the Data Division:

In the File Section,
condition-name entries.

the VALUE clause may be used only in

In the Working-Storage Section, the VALUE clause must be used
in condition-name entries. The VALUE clause may also be used
to specify the initial value of any other data item; in which
case the clause causes the item to assume the specified value
at the start of the obJect program. If the VALUE clause is not
used in an item's description, the initial value is undefined.

In the Linkage Section, the VALUE clause may be used only in
condition-name entries.

PAGE 85

The VALUE clause must not be stated in a data description entry ~
that contains an OCCURS clause, or in an entry that is subordinate
to any entry containing a REDEFINES clause. This rule does not
apply to condition-name entries.

If the VALUE clause is used in an entry at the group level, the
literal must be a figurative constant or a nonnumeric literal, and
the group area is initialized without consideration for the
individual •lementary or group items contained within this group.
The VALUE clause cannot be stated at the subordinate levels within
this group.

The VALUE clause must not be written for a group containing
with descriptions including JUSTIFIED, SYNCHRONIZED, or
(other than USAGE IS DISPLAY>.

PAGE 86

items
USAGE

The RENAMES Clause

The RENAMES clause permits alternative, possibly overlapping,
groupings of elementary items.

FORMAT

66 data-name-11

RENAMES data-name-2 [{THROUGH> data-name-3J.

{THRU }

NOTE: Level-number 66, data-name-1 and the semicolon are shown
in the above format to improve clarity. Level-number and
data-name-1 are not part of the RENAMES clause.

All RENAMES entries referring to data items within~ given logical
record must immediately follow the last data description entry of

;--. the associated record description entry.

Data-name-2 and data-name-3 must be names of elementary items or
groups of elementary items in the same logical record, and cannot
be the same data-name. A 66 level entry cannot rename another 66
level entry nor can it rename a 77, 88, or 01 level entry.

Data-name-1 cannot be used as a qualifier, and can only be
qualified by the names of the associated level 01 or FD entries.
Neither data-name-2 nor data-name-3 may have an OCCURS clause in
its data description entry nor be subordinate to an item that has
an OCCURS clause in its data description entry.

The beginning of the area described by data-name-3 must not be to
the left of the beginning of the area described by data-name-2.
The end of the area described by data-name-3 must be to the right
of the end of the area described by data-name-2. Data-name-3,
therefore, cannot be subordinate to data-name-2.

Data-name-2 and data-name-3 may be qualified.

None of the items within the range, including data-name-2 and
data-name-3, if specified, can be an item whose size is variable
as defined in the OCCURS clause.

PAGE 87

One or more RENAMES entries can be written for a logical record.

When data-name-3 is specified, data-name-1 is a group item which
includes all elementary items starting with data-name-2 (if
data-name-2 is an elementary item> or the first elementary item in
data-name-2 (if data-name-2 is a group item>, and concluding with
data-name-3 (if data-name-3 is an elementary item) or the last
elementary item in data-name-3 (if data-name-3 is a group item).

When data-name-3 is not specified, data-name-2 can be either a
group or an elementary item; when data-name-2 is a group item,
data-name-1 is treated as a group item, and when data-name-2 is an
elementary item, data-name-1 is treated as an elementary item.

The words THRU and THROUGH are equivalent.

PAGE 88

DATA STRUCTURES

Classes of Data

The five categories of data items (see the PICTURE Clause) are
grouped into three classes:

alphabetic
numeric
alphanumeric

For alphabetic and numeric, the classes and categories are
synonymous.

The alphanumeric class includes the categories of alphanumeric
edited, numeric edited and alphanumeric (without editing>.

Every elementary item except for an index data item belongs to one
of the classes and further to one of the categories. The class of
a group item is treated at obJect time as alphanumeric regardless
of the class of elementary items subordinate to that group item.

The following chart depicts the relationship of the class and
categories of data items:

--
!LEVEL OF ITEM I CLASS
1--------------1----------------

Alphabetic
:----------------

Numeric
Elementary

Alphanumeric

Nonelementary Alphanumeric
(Group>

PAGE 89

CATEGORY
----------------------:

Alphabetic I
----------------------:

Numeric

Numeric Edited
Alphanumeric Edited
Alphanumeric

Alphabetic
Numeric
Numeric Edited
Alphanumeric Edited
Alphanumeric

Representation of Numeric Items

The value of a numeric item may be represented in either binary,
decimal or packed decimal form depending on the USAGE clause
associated with the item. There are two ways of expressing
decimal: DISPLAY and COMPUTATIONAL. Binary is COMPUTATIONAL-1.
Packed decimal is COMPUTATIONAL-3.

The selection of the proper representation is dependent upon the
usage of the numeric item. Items which must be used for input and
output should be of DISPLAY usage to eliminate conversions to
external forms. For efficiency of arithmetic operations,
COMPUTATIONAL, COMPUTATIONAL-1, or COMPUTATIONAL~3 should be used.
To reduce conversions and increase efficiency, types should not be
mixed in operations except where re~uired by program needs.

Representation of Algebraic Signs

Algebraic signs fall into two categories:

operational signs which are
data items, and signed numeric
algebraic properties; and

associated with signed numeric
literals to indicate their

editing signs which appear to identify the sign of the item.

For DISPLAY, COMPUTATIONAL, and COMPUTATIONAL-3, an unsigned
numeric item is assumed to have an operational sign which is
positive and will receive the absolute value of signed items. A
signed numeric item maintains the operational sign as a separate
trailing character.

For COMPUTATIONAL-1 (which is always signed), the operational sign
is maintained as part of the item in two's complement signed
binary form.

Editing signs are inserted into a data item through the use of the
sign control symbols of the PICTURE clause.

PAGE 90

Standard Alignment Rules

The standard rules of positioning data within an elementary item
depend on the category of the receiving item:

If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the
receiving character positions with zero fill or truncation
on either end as required.

b. When an assumed decimal point is not explicitl\l specified,
the data item is treated as if it had an assumed decimal
point immediately following its rightmost character and is
aligned as in a. above.

If the receiving data item is a numeric edited data item, the
data moved to the edited data item is aligned by decimal point
with zero-fill or truncation at either end as required within
the receiving character positions of the data item, except
where editing requirements cause replacement of the leading
zeros.

If the receiving data item is alphanumeric (other than a
numeric edited data item>, alphanumeric edited or alphabetic,
the sending data is moved to the receiving character positions
and aligned at the leftmost character position in the data
item with space-fill or truncation to the right, as required.

If the JUSTIFIED clause is specified for the receiving item, these
standard rules are modified as described in the JUSTIFIED clause.

PAGE 91

QUALIFICATION

Every user-specified name that defines an element in a COBOL
source program must be unique, either because no other name has
the identical spelling and hyphenation, or because the name exists
within a hierarchy of names such that references to the name can
be made unique by mentioning one or more of the higher levels of
the hierarchy. The higher levels are called qualifiers and this
process that specifies uniqueness is called qualification. Enough
qualification must be mentioned to make the name unique; however,
it may not be necessary to mention all levels of the hierarchy.
Within the Data Division, all data-names used for qualification
must be associated with a level indicator or a level-number.
Therefore, two identical data-names must not appear as entries
subordinate to a group item unless they are capable of being made
unique through qualification.

In the hierarchy of qualification, names associated with a level
indicator are the most significant, then those names associated
with level-number 01, then names associated with level-number 02,
... , 49. The most significant name in the hierarchy must be unique
and cannot be qualified.

Qualification is performed by following a data-name, by one or
more phrases composed of a qualifier preceded by IN or OF. IN and ,~
OF are logically equivalent.

FORMAT 1

{data-name-1} [{OF> data-name-2 l ...

<condition-name} <IN>

FORMAT 2

paragraph-name [{OF} section-name]

<IN>

PAGE 92

The rules for qualification are as follows:

1. Each qualifier must be of a successively higher level and
within the same hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. If a data name is assigned to more than one data item in a
source program, the data-name must be qualified each time it
is referred to in the Procedure, Environment, and Data
Divisions <except in the REDEFINES clause where qualification
is unnecessary and must not be used.)

4. A paragraph-name must not be duplicated within a section. When
a paragraph-name is qualified by a section-name, the word
SECTION must not appear. A paragraph-name need not be
qualified when referred to from within the same section.

5. A data-name cannot be subscripted when it is being used as a
qua 1 if i er.

o. A name can be qualified even though it does not need
qualification: if there is more than one combination of
qualifiers that ensures uniqueness, then any such set can be
used. The complete set of qualifiers for a data-name must not
be the same as any partial set of qualifiers for another
data-name. Qualified data-names may have any number of
qualifiers up to a limit of 49.

PAGE 93

SUBSCRIPTING

Subscripts can be used only when reference is made to an
individual element within a list of a table of like elements that
have not been assigned individual data-names (see The OCCURS
Clause).

The subscript can be represented either by a numeric literal that
is an integer or by a data-name. The data name must be a numeric
elementary item that represents an integer. When the subscript is
represented by a data-name, the data-name may be ~ualified but not
subscripted.

The subscript may be signed and, if signed, it must be positive.
The lowest possible subscript value is 1. This value points to the
first element of the table. The next sequential elements of the
table are pointed to by subscripts whose values are 2, 3, ... n.
The highest permissible subscript value, in any particular case,
is the maximum number of occurrences of the item as specified in
the OCCURS clause.

The subscript, or set of subscripts, that identifies the table
element is delimited by the balanced pair of separators, left
parenthesis and right parenthesis, following the table element
data-name. The table element data-name appended with a subscript
is called a subscripted data-name or an identifier. When more than
one subscript is re~uired, they are written in the order of
successively less inclusive dimensions of the data organization.

FORMAT

{data-name > <subscript-1 Csubsc~ipt-2 C,subscript-3JJ>
<condition-name>

PAGE 94

INDEXING

References can be made to individual elements within a table of
like elements by specifying indexing for that reference. An index
is assigned to that level of the table by using the INDEXED BY
phrase in the definition of a table. A name given in the INDEXED
BY phrase is known as an index-name and is used to refer to the
assigned index. The value of an index corresponds to the
occurrence number of an element in the associated table. An
index-name must be initialized before it is used as a table
reference. An index-name can be given an initial value by a SET
statement, or a FORMAT 4 PERFORM statement.

Direct indexing is specified by using an index-name in the form of
a subscript. Relative indexing is specified when the index-name is
followed by the operator+ or-, followed by an unsigned integer
numeric literal all delimited by the balanced pair of separators,
left parenthesis and right parenthesis, following the table
element data-name. The occurrence number resulting from relative
indexing is determined by incrementing (where the operator+ is
used) or decrementing <when the operator - is used>, by the value
of the literal, the occurrence number represented by the value of
the index. When more than one index-name is req,uired, they are
written in the order of successively less inclusive dimensions of
the data organization.

At the time of execution of a statement which refers to an indexed
table element, the value contained in the index referenced by the
index-name associated with the table element must neither
correspond to a value less than one (1) nor to a value greater
than the highest permissible occurrence number of an element of
the associated table. This restriction also applies to the value
resultant from relative indexing.

FORMAT

{data-name} ({index-name-1 C{+} literal-2]}
{condition-name} {literal-1 <-} }

C,{index-name-2 C{+} literal-4]}
{literal-3 <-} }

C,{index-name-3 C{+} literal-6J}JJ)
{literal-5 {-} }

PAGE 95

IDENTIFIER

An identilier is a term used to reflect that a data-name, ii not
unique in a program, must be lollowed by a syntactically correct
combination of qualiliers, subscripts or indices necessary to
ensure uniqueness. The general lormats for identifiers are:

FORMAT 1

data-name-1 [{OF} data-name-2] . . . C < subscript-1

{IN}

C,subscript-2 C,subscript-3JJ)J

FORMAT 2

data-name-1 [{OF> data-name-2] ... C({index-name-1 [{+} literal-2]}
{literal-1 {-} }

<IN}

C,{index-name-2 [{+} literal-4]}
{literal-3 <-> }

C,{index-name-3 [{+} literal-6l}JJ)l
{literal-5 <-> }

Restrictions on qualification, subscripting and indexing are:

A data-name must not itself be subscripted nor
that data-name is being used as an index,
qualifier.

indexed when
subscript or

Indexing is not permitted where subscripting is not permitted.

An index may be modified only by the SET and PERFORM
statements. Data items described by the USAGE IS INDEX clause
permit storage of the values associated with index-names as
data in a form specified by the compiler. Such data items are
called index data items.

Literal-1, literal-3, literal-5 in the above format must be
positive numeric integers. Literal-2, literal-4, literal-6,
must be unsigned numeric integers.

PAGE 96

~ CONDITION-NAME

Each condition-name must be uniq,ue, or be made unique through
qualification and/or indexing, or subscripting.

If q,ualification is used to make a condition-name unique, the
associated conditional variable may be used as the first
qualifier. If qualification is used, the hierarchy of names
associated with the conditional variable or the conditional
variable itself must be used to make the condition-name unique.

If references to a conditional variable require indexing or
subscripting, then references to any of its condition-names also
require the same combination of indexing or subscripting.

The format and restrictions on the combined use of qualification,
subscripting, and indexing of condition-names is exactly that of
'identifier' except that data-name-1 is replaced by
condition-name-1.

In the general formats, 'condition-name'
condition-name qualified, indexed or subscripted,

PAGE 97

refers to
as necessar1i1.

a

TABLE HANDLING

Tables of data are common components of business data processing
problems. Although items of data that make up a table could be
described as contiguous data items, there are two reasons why this
approach is not satisfactory. First, from a documentation
standpoint, the underlying homogeneity of the items would not be
readily apparent; and second, the problem of making available an
individual element of such a table would be severe when there is a
decision as to which element is to be made available at obJect
time.

Tables composed of contiguous data items ar~ defined in COBOL by
including the OCCURS clause in their data description entries.
This clause specifies that the item is to be repeated as many
times as stated. The item is considered to be a table element and
its name and description apply to each repetition or occurrence.
Since each occurrence of a table element does not have assigned to
it a unique data-name, reference to a desired occurrence may be
made only by specifying the data-name of the table element
together with the occurrence number of the desired table element.
Subscripting and indexing are the two methods that are used to
specify the occurrence number of a desired table element.

Table Definition

To define a one-dimensional table, the programmer uses an OCCURS
clause as part of the data description of the table element, but
the OCCURS clause must not appear in the description of group
items which contain the table element.

Example 1:

01 TABLE-1.
02 TABLE-ELEMENT OCCURS 20 TIMES.

03 NAME
03 SSAN

Defining a one-dimensional table within each occurrence of an
element of another one-dimensional table gives rise to a
two-dimensional table. To define a two-dimensional table, then, an
OCCURS clause must appear in the data description of the element
of the table, and in the description of only one group item which
contains that table. In the description of a three-dimensional
table, the OCCURS clause should appear in the data description of
2 nested group items which contain the element. In COBOL, tables
of up to 3 dimensions are permitted. ·~

PAGE 98

.~ Example 2 shows a table which has one dimension for
CONTINENT-NAME, two dimensions for COUNTRY-NAME, and three
dimensions for CITY-NAME and CITY-POPULATION. The table includes
100,510 data items--10 for CONTINENT-NAME, 500 for COUNTRY-NAME,
50,000 for CITY-NAME, and 50,000 for CITY-POPULATION. Within the
table there are ten occurrences of CONTINENT-NAME. Within each
CONTINENT-NAME there are 50 occurrences of COUNTRY-NAME and within
each COUNTRY-NAME there are one hundred occurrences of CITY-NAME
and CITY-POPULATION.

Example 2:

01 CENSUS-TABLE.
05 CONTINENT-TABLE OCCURS 10 TIMES.

10 CONTINENT-NAME PIC XXXXXX.
10 COUNTRY-TABLE OCCURS 50 TIMES.

15 COUNTRY-NAME PIC XXXXXXXX.
15 CITY-TABLE OCCURS 100 TIMES.

20 CITY-NAME PIC XXXXXXXXXX.
20 CITY-POPULATION PIC 999999999999.

References to Table Items

Whenever the user refers to a table element, the reference must
indicate which occurrence of the element is intended. For access
to a one-dimensional table, the occurrence number of the desired
element provides complete information. For access to tables of
more than one dimension, an occurrence number must be supplied for
each dimension of the table accessed. In Example 2 then, a
reference to the 4th CONTINENT-NAME would be complete, whereas a
reference to the 4th COUNTRY-NAME would not. To refer to
COUNTRY-NAME, which is an element of a two-dimensional table, the
user must refer to, for example, the 4th COUNTRY-NAME within the
6th CONTINENT-TABLE.

One method by which occurrence numbers may be specified is to
append one or more subscripts to the data-name. A subscript is an
integer whose value specifies the occurrence number of an element.
The subscript can be represented either by a literal which is an
integer or by a data-name which is defined elsewhere as a numeric
elementary item with no character positions to the right of the
assumed dee ima 1 po int. In either case, the subscript, enclosed in
parentheses, is written immediately following the name of the
table element. A table reference must include as many subscripts
as there are dimensions in the table whose element is being
referenced. That is, there must be a subscript for each OCCURS
clause in the hierarchy containing the data-name, including the
data-name itself. In Example 2, references to CONTINENT-NAME
require only one subscript, reference to COUNTRY-NAME requires
two, and references to CITY-NAME and CITY-POPULATION require
three.

PAGE 99

When more than one subscript is required, they are written in,,,---.,,,
order of successively less inclusive dimensions of the data
organization. When a data-name is used as a subscript, it may be
used to refer to items in many different tables. These tables need
not have elements of the same size. The data-name may also appear
as the only subscript with one item and as one of two or three
subscripts with another item. Also, it is permissible to mix
literal and data-name subscripts, for example: CITY-POPULATION
<10, NEWKEY, 42).

Another method of referring to items in a table is indexing. To
use this technique, the programmer assigns one or more index-names
<defined with the INDEXED-BY phrase of the OCCURS clause) to an
item whose data description contains an OCCURS clause. There is no
separate entry to describe the index-name since its definition is
completely hardware-oriented and it is not considered data per se.
At obJect time the contents of the index-name will correspond to
an occurrence number for that specific dimension of the table to
which the index-name was assigned. The initial value of an
index-name at obJect time is not determinable and the index-name
must be initialized by the SET statement before use.

When a reference is made to a table element, or to an item within
a table element, and the name of the item is followed by its
related index-name or names in parentheses, then each occurrence
number required to complete the reference will be obtained from
the respective index-name. The index-name thus acts as a subscript
whose value is used in any table reference that specifies
indexing.

PAGE 100

VI

PROCEDURE DIVISION

PAGE 101

__________________________________ /

' '\,\.

THE PROCEDURE DIVISION

The Procedure Division must be included in every COBOL source
program. This division may contain declaratives and nondeclarative
procedures.

The Procedure Division is identified by and must begin with the
following header:

PROCEDURE DIVISION [USING data-name-1 t,data-name-2J ... J.

The USING phrase is present if and only if the obJect program is
to function under the control of a CALL statement, and the CALL
statement in the calling program contains a USING phrase.

Each of the operands in the USING phrase of the Procedure Division
header must be defined as a data item in the Linkage Section of
the program in which this header occurs, and it must have a 01 or
77 level-number.

Within a called program, Linkage Section data items are processed
according to their descriptions given in the called program. Of ,,-..,
those items defined in the Linkage Section only data-name-1,
data-name-2, items subordinate to these data-names, and
condition-names and/or index-names associated with such data-names
and/or subordinate data items, may be referenced in the Procedure
Division.

When the USING phrase is present, the obJect program operates as
if data-name-1 of the Procedure Division header in the called
program and data-name-1 in the USING phrase of the CALL statement
in the calling program refer to a single set of data that is
equally available to both the called and calling programs. Their
definitions must contain the same data descriptions; however, they
need not be the same name. In like manner, there is an equivalent
re lat i onsh i p between data-name-2, ... , in the USING phrase of the
ca 11 ed program and data-name-2, ... , in the USING phrase of the
CALL statement in the calling program. A data-name must not appear
more than once in the USING phrase in the Procedure Division
header of the called program; however, a given data-name may
appear more than once in the same USING phrase of a CALL
statement.

PAGE 102

---~

Structure

The bod~ of the Procedure Division must conform to one of the
following formats:

FORMAT 1

PROCEDURE DIVISION CUSINO data-name-1 C,data-name-2) ... l.
--------- -------- -----
[DECLARATIVES.

{section-name SECTION [segment-number]. declarative-sentence

[paragraph-name. [sentence) ... l ... > ...

END DECLARATIVES. J

{section-name SECTION [segment-number].

[paragraph-name. Csentencel ... l ... > ...

[ENO PROGRAM].

FORMAT 2

PROCEDURE DIVISION CUSINQ data-name-1 C,data-name-2l ... l.
--------- -------- -----

{paragraph-name. [.sentence) ... } ...

C END PROGRAM J.

The segment-number must be an integer ranging in value from 0
through 127.

If the segment-number is omitted from the section header, the
segment-number is assumed to be 0.

Sections in the declaratives must contain segment-numbers less
than 50.

PAOE 103

All sections which have the same segment-number constitute a ~
program segment. Sections with the same segment-number must be
physically contiguous in the source program.

Segments with segment-numbers O through 49 belong to the fixed
portion of the obJect program. Segments with segment-numbers 50
through 127 are independent segments. Independent segments must
follow fixed segments.

Declaratives

Declarative sections must be grouped at the beginning of the
Procedure Division preceded by the key word DECLARATIVES and
followed by the key words END DECLARATIVES.

Procedures

A procedure is composed of a paragraph, or group of successive
paragraphs, or a section, or a group of successive sections within
the Procedure Division. If one paragraph is in a section, then all
paragraphs must be in sections. A procedure-name is a word used to
refer to a paragraph or section. It consists of a paragraph-name
<which may be ~ualified), or a section-name.

A section consists of a
successive paragraphs.
section or at the end
declaratives portion
END DECLARATIVES.

section header followed by zero, or more
A section ends immediately before the next
of the Procedure Division or, in the

of the Procedure Division, at the k~@ words

A paragraph consists of a paragraph-name followed by a period and
a space and by zero, or more successive sentences. A paragraph
ends immediately before the next paragraph-name or section-name or
at the end of the Procedure Division or, in the declaratives
portion of the Procedure Division, at the key words END
DECLARATIVES. A paragraph-name must not be duplicated within a
section.

Execution

Execution begins with the first statement of the Procedure
Division, excluding declaratives. Statements are then executed in
the order in which they are presented for compilation, except --._
where the rules indicate some other order.

PAGE 104

PROCEDURE REFERENCES

A procedure is referred to by its paragraph-name or section-name.
Paragraph-names may be qualified by the section-name of the
section containing the paragraph, whether or not it needs
qualification. When referring to a section-name or when using a
section-name as a qualifier, the word SECTION must not appear.
Gualification is performed by following a paragraph-name with a
section-name preceded by IN or OF. IN and OF are logically
equivalent. The general format for paragraph qualification is:

paragraph-name [{OF} section-nameJ

<IN}

A paragraph-name need not be qualified when referred to from
within the same section or when the paragraph-name is unique.

Explicit and Implicit Transfers of Control

The mechanism that controls program flow transfers control from
statement to statement in the sequence in which they were written
in the source program unless an explicit transfer of control
overrides this sequence or there is no next executable statement
to which control can be passed. The transfer of control from
statement to statement occurs without the writing of an explicit
Procedure Division statement, and therefore, is an implicit
transfer of control.

COBOL provides both explicit and implicit means of altering the
implicit control transfer mechanism.

In addition to the implicit transfer of control between
consecutive statements, implicit transfer of control also occurs
when the normal flow is altered without the execution of a
procedure branching· statement. COBOL provides the following types
of implicit control flow alterations which override the
statement-to-statement transfers of control:

If a paragraph is being executed under control of another
COBOL statement (for example, PERFORM and USE> and the
paragraph is the last paragraph in the range of the
controlling statement, then an implied transfer of control
occurs from the last statement in the paragraph to the control
mechanism of the last executed controlling statement. Further,
if a paragraph is being executed under the control of a
PERFORM statement which causes iterative execution and that
paragraph is the first paragraph in the range of that PERFORM
statement, an implicit transfer of control occurs between the
control mechanism associated with that PERFORM statement and

PAGE 105

the first statement in that paragraph for each iterative ~
execution of the paragraph.

When any COBOL statement is executed which results in the
execution of a declarative section, an implicit transfer of
control to the declarative section occurs. Note that another
implicit transfer of control occurs after execution of the
declarative.

An explicit transfer of control consists of an alteration of the
implicit control transfer mechanism by the execution of a
procedure branching or conditional statement. An explicit transfer
of control can be caused only by the execution of a procedure
branching or conditional statement. The execution of the procedure
branching statement ALTER does not in itself constitute an
explicit transfer of control, but affects the explicit transfer of
control that occurs when the associated GO TO statement is
executed.

In this document, the term 'next executable
refer to the next COBOL statement to which
according to the rules above and the rules
language element in the Procedure Division.

statement' is used to
control is transferred
associated with each

There is no next executable statement following:

The last statement in a declarative section when the paragraph
in which it appears is not being executed under the control of
some other COBOL statement. In COBOL, the result would be an
implicit transfer of control to the first nondeclarative
statement.

The last statement in a program when the paragraph in which it
appears is not being executed under the control of some other
COBOL statement. The result would be as if an implicit STOP
RUN statement were executed.

PAGE 106

SEGMENTATION

COBOL segmentation is a facility that provides a means by which
the user may communicate with the compiler to specify obJect
program overlay requirements. COBOL segmentation deals only with
segmentation of procedures.

Segments

When segmentation is used, the entire Procedure Division must be
in sections. In addition, each section must be classified as
belonging either to the fixed portion or to one of the independent
segments of the obJect program as determined by the assignment of
segment numbers. All source paragraphs which contain the same
segment-numbers can range from 00 through 127, it is possible to
subdivide any obJect program into a maximum of 128 segments.
Segmentation in no way affects the need for qualification of
procedure-names to insure uniqueness.

Fixed Portion

The fixed portion is defined as that part of the obJect program
which is always in memory. This portion of the program is composed
of segments with segment-numbers O through 49.

Independent Segments

An independent segment is defined as part of the obJect program
which can overlay, and can be overlaid by, another independent
segment. An independent segment has a segment-number 50 through
127.

An independent segment is in its initial state whenever control is
transferred (either implicitly or explicitly) to that segment for
the first time during the execution of a program.

On subsequent transfers of control to the segment, an independent
segment is also in its initial state when:

Control is transferred to that segment as a result of the
implicit transfer of control between consecutive statements
from a segment with a different segment-number.

Control is transferred explicitly to that segment from a
segment with a different segment-number.

PAGE 107

On subsequent transfer of control to the segment, an
segment is in its last-used state when control is
implicitly to that segment from a segment with a
segment-number.

Segmentation Classification

independent~
transferred

different --

Sections which are to be segmented are classified using a system
of segment-numbers and the following criteria:

Logic Requirements--Sections which must be available for
reference at all times, or which are referred to very
frequently, are normally classified as belonging to one of the
permanent segments; sections which are used less frequently
are normally classified as belonging to one of the independent
segments, depending on logic requirements.

Frequency of Use--Qenerally, the more frequently a section is
referred to, the lower its segment-number; the less frequently
it is referred to, the higher its segment-number.

Relationship to Other
communicate with one
segment-numbers.

Segmentation Control

Sections -- Sections
another should be

which
given

freq,uently
the same

The logical sequence of the program is the same as the physical
seq,uence except for specific transfers of control. Control may be
transferred within a source program to any paragraph in a section;
that is, it is not mandatory to transfer control to the beginning
of a section.

Restrictions on Program Flow

When segmentation is used, the following restrictions are placed
on the ALTER and PERFORM statements.

PAGE 108

The ALTER STATEMENT

A GO TO statement in a section whose segment-number is greater
than or e~ual to 50 must not be referred to by an ALTER statement
in a section with a different segment-number.

The PERFORM STATEMENT

A PERFORM statement that appears in a section that is not in an
independent segment can have within its range, in addition to any
declarative sections whose execution is caused within that range,
only one of the following:

Sections and/or paragraphs wholly contained in one or more
fixed segments, or

Sections and/or paragraphs wholly contained in a single
independent segment.

A PERFORM statement that appears in an independent segment can
have within its range, in addition to any declarative sections
whose execution is caused within that range, only one of the
following:

Sections and/or paragraphs wholly contained in one or more
fixed segments, or

Sections and/or paragraphs wholly contained in the same
independent segment as that PERFORM statement.

PAQE 109

THE USE STATEMENT

The USE statement specifies procedures for input-output error
handling that are in addition to the standard procedures provided
by the input-output control system. It is a compiler directing
statement re~uired in each declarative section.

FORMAT

USE AFTER STANDARD {EXCEPTION}

<ERROR }

PROCEDURE ON {file-name-1 C,file-name-2J ... >

<INPUT

{OUTPUT

{I-0

<EXTEND

}

}

}

}

A USE statement, when present, must immediately
header in the declaratives section and must be
period followed by a space. The remainder of
consist of zero, one or more procedural paragrahs
procedures to be used.

follow a section
followed by a

the section must
that define the

The USE statement itself is never executed; it merely defines the
conditions calling for the execution of the USE procedure.

The same file-name can appear in only one USE statement.

The words ERROR and EXCEPTION are synonymous and may be used
interchangeably.

The designated procedures can be executed by the input-output
system after completing the standard input-output error routine,
or upon reco~nition of the INVALID KEY or AT END conditions, when
the INVALID KEY phrase or AT END phrase, respectively, has not
been specified in the input-output statement.

After execution of a USE procedure, control is returned to the
invoking routine.

PAGE 110

Within a USE procedure, there must not be any reference to any
nondec la rat ive procedures. Conversely, in the nond ec larati ve
portion there must be no reference to procedure-names that appear
in the declarative portion, except that PERFORM statements may
refer to a USE statement or to the procedures associated with such
a USE statement.

Within a USE procedure, there must not be the execution of any
statement that would cause the execution of a USE procedure that
had previously been invoked and had not yet returned control to
the invoking routine.

USE Example:

PROCEDURE DIVISION.
DECLARATIVES.
IO-ERROR SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON I-0.
IO-ERROR.

DISPLAY "INPUT-OUTPUT ERROR OCCURRED".
ACCEPT CONTINUE-FLAG POSITION ZERO.
IF CONTINUE-FLAG= "NO" STOP RUN.

END DECLARATIVES.

PAGE 111

ARITHMETIC STATEMENTS

The arithmetic statements ADD, COMPUTE,
SUBTRACT have several common features:

DIVIDE, MULTIPLY, and

The data descriptions of the operands need not
any necessary conversion and decimal point
supplied throughout the calculation.

be the same;
alignment is

Arithmetic operations are calculated in either binary,
decimal, packed decimal, or mixed depending on the USAGE of
the operands and receiving item according to the following
rules:

If the receiving data item of a divide operation is
DISPLAY or COMPUTATIONAL, the operation is always
calculated in decimal with any necessary conversions.

Intermediate and final results are calculated in binary if
all preceding intermediate results are binary and the next
operand has COMPUTATIONAL-1 usage <except as noted in
previous paragraph). Otherwise, the remaining intermediate
and final results are calculated in decimal with any
necessary conversions.

The maximum
digits. The
data item
operands in
not contain

size of each operand is eighteen (18) decimal
composite of operands, which is a hypothetical
resulting from the super-imposition of specified
a statement aligned on their decimal points, must
more than eighteen decimal digits.

Arithmetic Expressions

An arithmetic expression can be an identifier of a numeric
elementary item, a numeric literal, such identifiers and literals
separated by arithmetic operators, two arithmetic expressions
separated by an arithmetic operator, or an arithmetic expression
enclosed in parentheses. Any arithmetic expression may be preceded
by a unary operator. The permissible combinations of variables,
numeric literals, arithmetic operator and parentheses are given in
Combination of Symbols in Arithmetic Expressions Table.

Those identifiers and literals appearing in an arithmetic
expression must represent either numeric elementary items or
numeric literals on which arithmetic may be performed.

PAGE 112

,,-..., Arithmetic Operators

There are four binary arithmetic operators and
arithmetic operators that may be used in arithmetic
They are represented by specific characters that must
by a space and followed by a space.

Binary Arithmetic
Operators

+

* I

Unarv Arithmetic
Operators

Meaning

Addition
Subtraction
Multiplication
Division

Meaning

two unary
ex press ions.
be preceded

+ The effect of multiplication
by numeric literal +1

Formation and Evaluation Rules

The effect of multiplication
by numeric literal -1.

Parentheses may be used in arithmetic expressions to specify the
order in which elements are to be evaluated. Expressions within
parentheses are evaluated first, and within nested parentheses,
evaluation proceeds from the least inclusive set to the most
inclusive set. When parentheses are not used, or parenthesized
expressions are at the same level of inclusiveness, the following
hierarchical order of execution is implied:

1st Unarv plus and minus
2nd - Multiplication and division
3rd Addition and subtraction

PAGE 113

Parentheses are used either to eliminate ambiguities in logic ~,
where consecutive operations of the same hierarchical level appear
or to modify the normal hierarchical sequence of execution in
expressions where it is necessary to have some deviation from the
normal precedence. When the sequence of execution is not secified
by parentheses, the order of execution of consecutive operations
of the same hierarchical level is from left to right.

The ways in which operators,
combined in an arithmetic
following table, where:

variables, and parentheses
expression are summarized

may
in

The letter 'P' indicates a permissible pair of symbols.

The character 1
-

1 indicates an invalid pai'r.

'Variable' indicates an identifier or literal.

SECOND SYMBOL FIRST
SYMBOL 1--:

I Variable *I-+ I Unary+ or - I (> :
-==---------:=---=----- ========:====================I
Variable P p I

------------·---------- --------:-------------- ---:
* I + - p p p - :

------------ ---------- ----------------------- ---:
Unary +or- P P - I

------------ ---------- --------1-------------- ---:
(p p p - :

,------------,---------- --------:-------------- ---:
I) p p I

be
the

An arithmetic expression may only begin with the symbol '(', '+',
'-', or a variable and may only end with a ')' or a variable.
There must be a one-to-one correspondence between left and right
parentheses of an arithmetic expression such that each left
parenthesis is to the left of its corresponding right parenthesis.

Arithmetic expressions allow the user
operations without the restrictions on
and/or receiving data items.

CONDITIONALS

to combine
composite

arithmetic
of operands

The conditions are relation, class, condition-name, and ~
switch-status. A condition has a truth va 1 ue of 'true' or 'false'.

PAGE 114

Relation Condition

A relation condition causes a comparison of two operands, each of
which may be the data item referenced by an identifier or a
literal. A relation condition has the truth value of 'true' if the
relation exists between the operands.

Comparison of two numeric operands is permitted regardless of the
formats specified in their respective USAGE clauses. However, for
all other comparisons the operands must have the same usage. If
either of the operands is a group item, the nonnumeric comparison
rules applt.,.

The general format of a relation condition is as follows:

{identifier-1} <IS [NOT] GREATER THAN}{identifier-2 }

{literal-1 } <IS CNOTJ LESS THAN

{index-name-1} {IS CNOTJ EQUAL TO

<IS CNOTl :>

{IS CNOTJ <

{IS [NOT]=

}{literal-2

}{index-name-2

}

}

}

}

}

The first operand (identifier-1, literal-1 or index-name-1) is
called the subJect of the condition; the second operand
(identifier-2, literal-2 or index-name-2) is called the obJect of
the condition. The relation condition must contain at least one
reference to a variable.

PAGE 115

The relational operator specifies the type of comparison to be ,-,
made in a relation condition. A space must precede and follow each
reserved word comprising the relational operator. When used, 'NOT'
and the next key word or relation character are one relational
operator that defines the comparison to be executed for truth
value; e.g., 'NOT EQUAL' is a truth test for an 'unequal'
comparison; 'NOT GREATER' is a truth test for an 'equal' or 'less'
comparison. The meaning of the relational operators is as follows:

Meaning

Greater than or not greater than

Less than or not less than

Equal to or not equal to

Relational Operator

IS CNOTJ GREATER THAN

IS CNOTl :>

IS tNOTl LESS THAN

IS CNOTl <

IS [NOT] EOUAL TO

IS tNOTl =

NOTE: The required relational characters ':>', '<', and '=' are
not underlined to avoid confusion with other symbols such
as '2:' (greater than or equa 1 to).

Comparison of Numeric Operands

For operands whose class is numeric a comparison is made with
respect to the algebraic value of the operands. The length of the
1 i tera 1 s or operands, in terms of number of digits represented, is
not significant. Zero is considered a unique value regardless of
the sign.

Comparison of these operands is permitted regardless of the manner
in which their usage is described. Unsigned numeric operands are
considered positive for purposes of comparison.

PAGE 116

Comparison of Nonnumeric Operands

For nonnumeric operands, or one numeric and one nonnumeric
operand, a comparison is made with respect to a specified
collating sequence of characters. If one of the operands is
specified as numeric, it must be an integer data item or an
integer literal and:

If the nonnumeric operand is an elementary data item or a
nonnumeric literal, the numeric operand is treated as though
it were moved to an elementary alphanumeric data item of the
same size as the numeric data item (in terms of standard data
format characters), and the contents of this alphanumeric data
item were then compared to the nonnumeric operand.

If the nonnumeric operand is a group item, the numeric operand
is treated as though it were moved to a group item of the same
size as the numeric data item (in terms of standard data
format characters>, and the contents of this group item were
then compared to the nonnumeric operand.

A noninteger numeric operand cannot be compared to a nonnumeric
operand.

The size of an operand is the total number of standard data format
characters in the operand. Numeric and nonnumeric operands may be
compared only when their usage is the same. There are two cases to
consider: operands of e~ual size and operands of unequal size.

Operands of e~ual size: If the operands are of equal size,
comparison effectively proceeds by comparing characters in
corresponding character positions starting from the high order end
and continuing until either a pair of unequal characters is
encountered or the low order end of the operand is reached,
whichever comes first. The operands are determined to be equal if
all pairs of characters compare equally through the last pair,
when the low order end is reached.

The first encountered pair of unequal characters is compared to
determine their rel~tive position in the collating sequence. The
operand that contains the character that is positioned higher in
the collating sequence is considered to be the greater operand.

Operands of une~ual size: If the operands are of unequal size,
comparison proceeds as though the shorter operand were extended on
the right by sufficient spaces to make the operands of equal size.

PAGE 117

Comparisons of Index-Names and/or Index Data Items

If two index-names are compared the result is the same as if the
corresponding occurrence numbers were compared.

For an index-name and a data item <other than an index data item)
or literal, the comparison is made between the occurrence number
that corresponds to the value of the index-name and the data item
or literal.

When a comparison is made between an index data item and an
index-name or another index data item, the actual values are
compared without conversion.

The result of the comparison of an index data item with any data
item or literal not specified above is undefined.

Class Condition

The class condition determines whether the operand is numeric,
that is, consists entirely of the characters
.... ' '9,, with or without the operational
that is, consists entirely of the characters
I z I I space. The general format for the
fol lows:

identifier IS CNOTJ {NUMERIC }

{ALPHABETIC}

10 I I , 1 , ' '2,' '3,,
sign; or alphabetic,

, A,, , B , , 'CI, • • • I

class condition is as

The usage of the operand
display. When used, 'NOT'
condition that defines the
v a 1 u e , e . g . , 'NOT NUMER IC '
operand is nonnumeric.

being tested must be described as
and the next key word specify one class
class test to be executed for truth
is a truth test for determining that an

PAGE 118

,...........__

_,,,,-

The NUMERIC test cannot be used with an item whose data
description describes the item as alphabetic or as a group item
composed of elementary items whose data description indicates the
presence of operational signCs>. If the data description of the
item being tested does not indicate the presence of an operational
sign, the item being tested is determined to be numeric only if
the contents are numeric and an operational sign is not present.
If the data description of the item does indicate the presence of
an operational sign, the item being tested is determined to be
numeric only if the contents are numeric and a valid operational
sign is present. Va 1 id op erat i ona 1 signs for data items are the
standard data format characters, '+' and '-'

The ALPHABETIC test cannot be used with an item whose data
description describes the item as numeric. The item being tested
is determined to be alphabetic only if the contents consist of any
combination of the alphabetic characters 'A' through 'Z' and the
space.

Condition-name (Conditional Variable)

In a condition-name condition, a conditional variable is tested to
determine whether or not its value is equal to one of the values
associated with a condition-name. The general-format for the
condition-name condition is as follows:

condition-name

If the condition-name is associated with a range of values, then
the conditional variable is tested to determine whether or not its
value falls in this range, including the end values.

The rules for comparing a conditional variable
condition-name value are the same as those specified for
conditions.

with a
relation

The result of the test is true if one of the values corresponding
to the condition-name equals the value of its associated
conditional variable.

PAGE 119

Switch-Status Condition

A switch-status condition determines the 'on' or 'off' status of a
software switch. The switch-name and the 'on' or 'off' value
associated with the condition must be named in the SPECIAL-NAMES
paragraph of the Environment Division. The general format for the
switch-status condition is as follows:

condition-name

The result of the test is true if the switch is set to the
specified position corresponding to the condition-name.

Complex Conditions

A complex condition is formed by combining simple conditions,
combined conditions and/or complex conditions with logical
connectors (logical operators 'AND' and 'OR'> or negating these
conditions with logical negation (the logical operator 'NOT'). The
truth value of a complex condition, whether parenthesized or not,
is that truth value which results from the interaction of all the
stated logical operators on the individual truth values of simple
conditions, or the intermediate truth values of conditions
logically connected or logically negated. The logical operators
and their meanings are:

Logical Operator

AND

OR

NOT

Meaning

Logical conJunction; the truth value
is 'true' if both of the conJoined
conditions are true; 'false' if one
or both of the conJoined conditions
is false.

Log i ca l i n c 1 us iv e OR; th e truth v a 1 u e
is 'true' if one or both of the
included conditions is true; 'false'
if both included conditions are false.

Logical negation or reversal of truth
value; the truth value is 'true'
if the condition is false;
'false' if the condition is true.

The logical operators must be preceded by a space and followed by ,........,_,
a space.

PAGE 120

.~ Negated Simple Conditions

.,,,-.

,,,,,..-.. ..

A simple condition is negated through the use of the logical
op er at or 'NOT ' . Th e negated s imp 1 e c on d i t i on e ff e c ts th e op p o s i t e
truth value for a simple condition. Thus the truth value of a
negated simple condition is 'true' if and only if the truth value
of the simple condition is 'false'; the truth value of a negated
simple condition is 'false' if and only if the truth value of the
simple condition is 'true'. The inclusion in parentheses of a
negated simple condition does not change the truth value.

The general format for a negated simple condition is:

NOT simple-condition

Combined and Negated Combined Conditions

A combined condition results from connecting conditions with one
of the 1 og i cal op era tors 'AND' or 'OR'. Th ft genera 1 format of a
combined condition is:

condition {(AND> condition} ...

{OR>

Where 'condition' may be:

A simple condition, or

A negated simple condition, or

A combined condition, or

A negated combined condition; i. e. , the 'NOT' 1 og i ca 1 op era tor
followed by a combined condition enclosed within parentheses,
or

Combinations of the above.

PAGE 121

Although parentheses need never be used when
(but not both) is used exclusively in
parentheses may be used to affect the final
mi x tu re of 'AND ' , 'OR ' and ' NOT ' i s used .

Condition Evaluation Rules

either 'AND' or 'OR'
a combined condition,
truth value when a

Condition -Evaluation Rules indicate the ways in which conditions
and logical operators may be combined and parenthesized. There
must be a one-to-one correspondence between left and right
parentheses such that each left parenthesis is to the left of its
corresponding right parenthesis.

Parentheses may be used to specify the order in which individual
conditions of complex conditions are to be evaluated when it is
necessary to depart from the implied evaluation precedence.
Conditions within parentheses are evaluated first, and, within
nested parentheses, evaluation proceeds from the least inclusive
condition to the most inclusive condition. When parentheses are
not used, or parenthesized conditions are at the same level of
inclusiveness, the following hierarchical order of logical
evluation is implied until the final truth value is determined:

Truth values for simple conditions are established.

Truth values for negated simple conditions are established.

Truth values for combined conditions are established:

'AND' logical operators, followed by
'OR ' 1 o g i c a 1 op er at or s .

Truth values for negated combined conditions are established.

When the se~uence of evaluation is not completely specified by
parentheses, the order of evaluation of consecutive operations
of the same hierarchical level is from left to right.

PAGE 122

,,,,,--.. SEGUENTIAL ORGANIZATION INPUT-OUTPUT

The sequential organization input-output statements
Procedure Division are the CLOSE, OPEN, READ, REWRITE,
USE, and WRITE statements.

Function

in the
UNLOCK,

Sequential organization input-output provides a capability to
access records of a file in established sequence. The sequence is
established as a result of writing the records to the file.

Organization

Sequential files are organized such that each record in the file
except the first has a unique predecessor record, and each record
except the last has a unique successor record. These
predecessor-successor relationships are established by the order
of WRITE statements when the file is created. Once established,
the predecessor-succ~ssor relationships do not change except in
the case where records are added to the end of the file.

Access Mode

In the sequential access mode, the sequence in which records are
accessed is the order in which the records were originally
written.

Current Record Pointer

The current record pointer is a conceptual entity used in this
document to facilitate specification of the next record to be
accessed within a given file. The concept of the current record
pointer has no meaning for a file opened in the output mode. The
setting of the current record pointer is affected only by the OPEN
and READ statements.

PAGE 123

I-0 Status

If the FILE STATUS clause is specified in a file control entry, a
value is placed into the specified two-character data item during
the execution of an OPEN, CLOSE, READ, WRITE, or REWRITE statement
and before any applicable USE procedure is executed, to indicate
to the COBOL program the status of that input-output operation.

Status Key 1

The leftmost character position of the FILE STATUS data item is
known as status key 1 and is set to indicate one of the following
conditions upon completion of the input-output operation:

'0' - Sue c essful Comp 1 et ion. The input-output statement was
successfully executed.

'1' - At End. The sequential READ statement was unsuccessfully
executed as a result of an attempt to read a record when no
next logical record exists in the file.

'3' - Permanent Error. The input-output statement was
unsuccessfully executed as the result of a boundary violation
for a se~uential file or as the result of an input-output
error, such as data check parity error, or transmission error.

'9' - General Error. The input-output statement was
unsuccessfully executed as a result of a condition that is
specified by the value of status key 2.

Status lo(.ey 2

The rightmost character position of the FILE STATUS data item is
known as status key 2 and is used to further describe the results
of the input-output operation. This character will contain a value
as follows:

If no further information is available concerning the
input-output operation, then status key 2 contains a value of
'0 '.

When status key 1 contains a value of '3' indicating a
permanent error condition, status key 2 may contain a value of
'4' indicating a boundary violation. This condition indicates
that an attempt has been made to write beyond the externally
defined boundaries of a sequential file.

PAGE 124

When status key 1
operating system
may contain a:

contains a value of '9' indicating an
error condition, the value of status key 2

'0' indicating an invalid operation. This condition
indicates that an attempt has been made to execute a READ,
WRITE, or REWRITE statement that conflicts with the current
open mode or a REWRITE statement not preceded by a
successful READ statement.

'1' indicating file not opened. This condition indicates
that an attempt has been made to execute a DELETE, START,
UNLOCK, READ, WRITE, REWRITE or CLOSE statement on a file
which is not currently open.

'2' indicating file not closed. This condition indicates
that an attempt has been made to execute an OPEN statement
on a file which is currently open.

'3' indicating file not available. This condition indicates
that an attempt has been made to execute an OPEN statement
for a file closed WITH LOCK.

'4' indicating an invalid open. This condition indicates
that an attempt has been made to execute an OPEN statement
for a file with no external correspondence or a file having
inconsistent parameters.

'5' indicating invalid device or no next reel. This
condition indicates that an attempt has been made to open a
file having parameters (e.g., open mode or organization)
which conflict with the device assignment <RANDOM, INPUT,
PRINT, ... > or that an attempt has been made to execute a
CLOSE REEL statement for the last reel/unit of a multi-reel
file. In the case of a CLOSE REEL, the file has been
closed.

'6' indicating an undefined current record pointer status.
This condition indicates that an attempt has been made to
execute a READ statement after occurrence of an
unsuccessful READ statement without an intervening
successful CLOSE and OPEN.

'7' indicating an invalid record length. This condition
indicates an attempt has been made to open a file that was
defined with a maximum record length different from the
externally defined maximum record length, or to execute a
WRITE statement that specifies a record with a length
smaller than the minimum or larger than the maximum record
size, or a REWRITE statement when the new record length is
different from that of the record to be rewritten.

PAGE 125

RELATIVE ORGANIZATION INPUT-OUTPUT

The Relative input-output statements in the Procedure Division are
the CLOSE, DELETE, OPEN, READ, REWRITE, START, UNLOCK and WRITE
statements.

Function

Relative input-output provides a capability to access records of a
mass storage file in either a random or sequential manner. Each
record in a relative file is uniquely identified by an integer
value greater than zero which specifies the record's logical
position in the file.

Organization

Relative file organization is permitted only on mass storage
devices <RANDOM device>.

A relative file consists of records which are identified by
relative record numbers. The file may be thought of as composed of
a serial string of areas, each capable of holding a logical
record. Each of these areas is denominated by a relative record
number, an integer value greater than zero. Records are stored and
retrieved based on this number. For example, the tenth record is
the one addressed by relative record number 10 and is the tenth
record area, whether or not records have been written in the first
through the ninth record areas.

Access Modes

In the sequential access mode, the sequence in which records are
accessed is the ascending order of the relative record numbers of
all records which currently exist within the file.

PAGE 126

In the random access mode, the se~uence in which records are
accessed is control led by the programmer. The desired record is
accessed by placing its relative record number in a relative key
data item.

In the dynamic access mode,
se~uential access to random
input-output statements.

Current Record Pointer

the programmer may change at will from
access using appropriate forms of

The current record pointer is a conceptual entity used in this
document to facilitate specification of the next record to be
accessed within a given file. The concept of the current record
pointer has no meaning for a file opened in the output mode. The
setting of the current record pointer is affected only by the
OPEN, READ, and START statements.

I-0 Status

If the FILE STATUS clause is specified in a file control entry, a
value is placed into the specified two-character data item during
the execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, or
START statement and before any applicable USE procedure is
executed, to indicate to the COBOL program the status of that
input-output operation:

Status Key 1

The leftmost character position of the FILE STATUS data item is
known as status key 1 and is set to indicate one of the following
conditions upon completion of the input-output operation:

'0' - Successful Completion. The input-output was successfully
executed.

'1' - At End. The statement was unsuccessfully executed as a
result of an attempt to read a record when no next logical
record exists in the file.

PAGE 127

'2' - Invalid Key. The input-output statement was ~
unsuccessfully executed as a result of one of the following:

Duplicate Key
No Record Found
Boundary Violation

'3' - Permanent
unsuccessfully
error, such as
error.

Error. The
executed as
data check,

input-output
the result of
parity error,

statement was
an input-output

or transmission

'9' - General Error. The input-output statement was
unsuccessfully executed as a result of a condition that is
specified by the value of status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is
known as status key 2 and is used to further describe the results
of the input-output operation. This character will contain a value
as follows:

If no further information is available concerning the
input-output operation, then status key 2 contains a value of
'0'. ~

When status key 1 contains a value of '2' indicating an
INVALID KEV condition, status key 2 is:

'2' indicating a duplicate key value. An attempt has been
made to write a record that would create a duplicate key.

'3' indicating no record found. An attempt has bee,l"I ruade
to access a record, identified by a key, and that record
does not exist in the file.

'4' indicating a boundary violation. An attempt has been
made to write beyond the externally-defined boundaries of
a file.

When status key 1 contains a
operating system error condition,
is:

value of '9' indicating an
the value of status key 2

'O' indicating invalid operation. An attempt has been made
to execute a DELETE, READ, REWRITE, START, or WRITE
statement which conflicts with the current open mode of
the file or a sequential access DELETE or REWRITE
statement not preceded by a successful READ statement.

PAGE 128

'1' indicating file not opened. This condition indicates
that an attempt has been made to execute a DELETE, START,
UNLOCK, READ, WRITE, REWRITE, or CLOSE statement on a file
which is not currently open.

'2' indicating file not closed. An attempt has been made
to execute an OPEN statement on a file that is currently
open.

'3' indicating file not available. An attempt has been
made to execute an OPEN statement for a file closed WITH
LOCK.

'4' indicating invalid OPEN. An attempt has been made to
execute an OPEN statement for a file with no external
correspondence or a file having inconsistent parameters.

'5' indicating invalid device. This condition indicates
that an attempt has been made to open a file having
parameters <e.g., open mode or organization> which
conflict with the device assignment <RANDOM, INPUT, PRINT,
...) .

'6' indicating an undefined current record pointer status.
This condition indicates that an attempt has been made to
execute a sequential READ statement after the occurrence
of an unsuccessful READ or START statement without an
intervening successful CLOSE and OPEN.

'7' indicating an invalid record length. This condition
indicates that an attempt has been made to OPEN.a file
that was defined with a maximum record length different
from the externally defined maximum record length, or to
execute a WRITE statement that specifies a record with a
length smaller than the minimum or larger than the maximum
record size, or a REWRITE statement when the new record
length is different from that of the record to be
rewritten.

The INVALID KEV Condition

The INVALID KEV condition can occur as a result of the execution
of a START, READ, WRITE, REWRITE, or DELETE statement.

When the INVALID KEY condition is recognized,
these actions in the following order:

PAGE 129

the System takes

A value is placed into the FILE STATUS data item, if specified ~
for this file, to indicate an INVALID KEV condition.

If the INVALID KEV phrase is
causing the condition, control is
KEY imperative statement. Any USE
file is not executed.

specified in the statement
transferred to the INVALID
procedure specified for this

If the INVALID KEV phrase is not specified, but a USE
procedure is specified, either explicitly or implicitly, for
this file, that procedure is executed.

When the INVALID KEV condition occurs,
input-output statement which recognized
unsuccessful and the file is not affected.

The AT END Condition

execution of the
the condition is

The AT END condition can occur as a result of the execution of a
READ statement. When the AT END condition occurs, execution of the
READ statement is unsuccessful.

PAGE 130

r--..

INDEXED ORGANIZATION INPUT-OUTPUT

Indexed input-output statements in the Procedure Division are the
CLOSE, DELETE, OPEN, READ, REWRITE, START, UNLOCK and WRITE
statements.

Function

Indexed input-output provides a capability to access records of a
mass storage file in either a random or sequential manner. Each
record in a nonsequential organization file is uniquely identified
by a key.

Organization

A file whose organization is indexed is a mass storage file in
which data records may be accessed by the value of a key. A record
description may include one or more key data items, each of which
is associated with an index. Each index provides a logical path to
the data records according to the contents of a data item within
each record which is the recorded key for that index.

The data item named in the RECORD KEY clause of the file control
entry for a file is the prime record key for that file. For
purposes of inserting, updating and deleting records in a file,
each record is identified solely by the value of its prime record
key. This value must, therefore, be unique and must not be changed
when updating the record.

Access Modes

In the sequential access mode, the sequence in which records are
accessed is the ascending order of the keys of all records which
currently exist within the file.

In the random access mode, the sequence in which records are
accessed is contro 11 ed by the programmer. For indexed f i 1 es, the
desired record is accessed by placing the value of its record key
in a record kev data item.

PAGE 131

In the dynamic access mode,
sequential access to random
input-output statements.

Current Record Pointer

the programmer may change at will from,,,..__.
access using appropriate forms of

The current record pointer is a conceptual entity used in this
document to facilitate specification of the next record to be
accessed within a given file. The concept of the current record
pointer has no meaning for a file opened in the output mode. The
setting of the current record pointer is affected only by the
OPEN, READ, and START statements.

I-0 Status

If the FILE STATUS clause is specified in a file control entry, a
value is placed into the specified two-character data item during
the execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, or
START statement and before any applicable USE procedure is
executed, to indicate to the COBOL program the status of that
input-output operation:

Status Key 1

The leftmost character position of the FILE STATUS data item is
known as status key 1 and is set to indicate one of the following
conditions upon completion of the input-output operation:

'0' - Successful Completion. The input-output was successfully
executed.

'1' - At End. The Format 1 READ statement was unsuccessfully
executed as a result of an attempt to read a record when no
next logical record exists in the file.

'2' - Invalid Key. The input-output statement was
unsuccessfully executed as a result of one of the following:

Sequence Error
Duplicate Key
No Record Found
Boundary Violation

PAGE 132

'3' - Permanent
unsuccessfully
error, such as
error.

Error. The
executed as
data check,

input-output
the result of
parity error,

statement was
an input-output

or transmission

'9' - General Error. The input-output statement was
unsuccessfully executed as a result of a condition that is
specified by the value of status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data
known as status key 2 and is used to further describe the
of the input-output operation. This character will contain
as follows:

item is
results
a value

If no further information is available concerning the
input-output operation, then status key 2 contains a value of
IQ I•

When status key 1 contains a value of 0, indicating a
successful completion, status key 2 may contain a value of 2,
indicating a duplicate key. This condition indicates:

For a READ statement, the key value for the current key of
reference is equal to the value of that same key in the
next record within the current key of reference.

For a WRITE or REWRITE statement, the record Just written
created a duplicate key value for at least one alternate
record key for which duplicates are allowed.

When status key 1 contains a value of '2' indicating an
INVALID KEV condition, status key 2 is:

'1' indicating a sequence error for a sequentially
accessed indexed file. The ascending sequence requirement
of successive record key values has been violated or the
record key value has been changed by the COBOL program
between the successful execution of a READ statement and
the execution of the next REWRITE statement for that file.

PAGE 133

'2' indicating a duplicate key value. An attempt has been ,,,-.,....
made to write a record that would create a duplicate ke~.

'3' indicating no record found. An attempt has been made
to access a record, identified by a key, and that record
does not exist in the file.

'4' indicating a boundary violation. An attempt has been
made to write beyond the externally-defined boundaries of
a file.

When status key 1 contains a
operating system error condition,
is:

value of '9' indicating an
the value of status key 2

'0' indicating invalid operation. An attempt has been made
to execute a DELETE, READ, REWRITE, START, or WRITE
statement which conflicts with the current open mode of
the file or a sequential access DELETE or REWRITE
statement not preceded by a successful READ statement.

'1' indicating file not opened. This condition indicates
an attempt has been made to execute a delete, start,
unlock, read, write, rewrite, or close statement on a file
that is not currently open.

'2' indicating file not closed. An attempt has been made
to execute an OPEN statement on a file that is currently
open.

'3' indicating file not available. An attempt has been
made to execute an OPEN statement for a file closed with
LOCK.

'4' indicating invalid open. An attempt has been made to
execute an OPEN statement for a file with no external
correspondence or a file having inconsistent parameters.

'5' indicating invalid device. This condition indicates
that an attempt has been made to open a file having
parameters <e.g., open mode or organization which conflict
with the device assignment <RANDOM, INPUT, PRINT, ...)).

'6' indicating an undefined current record pointer status.
This condition indicates that an attempt has been made to
execute a sequential READ statement after the occurrence
of an unsuccessful READ or START statement without an
intervening successful CLOSE and OPEN.

PAGE 134

'7' indicating an invalid record length. This condition
indicates that an attempt has been made to open a file
that was defined with a maximum record length different
from the externally defined maximum record length, or to
execute a WRITE statement that specifies a record with a
length smaller than the minimum or larger than the maximum
record size, or a REWRITE statement when the new record
length is different from that of the record to be
re111ri tten.

'8' indicating an invalid indexed file. This condition
indicates that the indexed file contains inconsistent
data. This is a catastrophic error from which th ere is no
recovery at the present time.

PAGE 135

The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the execution
of a START, READ, WRITE, REWRITE, or DELETE statement.

When the INVALID KEY condition is recognized,
these actions in the following order:

the System takes

A value is placed into the FILE STATUS data item, if specified
for this file, to indicate an INVALID KEY condition.

If the INVALID KEY phrase is
causing the condition, control is
KEY imperative statement. Any USE
file is not executed.

specified in the statement
transferred to the INVALID
procedure specified for this

If the INVALID KEY phrase is not specified, but a USE
procedure is specified, either explicitly or implicitly, for
this file, that procedure is executed.

When the INVALID KEY condition occurs, execution of the
input-output statement which recognized the condition is
unsuccessful and the file is not affected.

The AT END Condition

The AT END condition can occur as a result of the execution of a
READ statement. When the AT END condition occurs, execution of the
READ statement is unsuccessful.

PAGE 136

PROCEDURAL STATEMENTS

The ACCEPT ... FROM Statement

The ACCEPT statement causes the information requested to be
transferred to the data item specified by identifier-1 according
to the rules of the MOVE statement. DATE, DAY, and TIME are
conceptual data items and, therefore, are not described in the
COBOL program.

FORMAT

ACCEPT identifier-! FROM <DATE}

<DAY}

<TIME}

DATE is composed of the data elements year of century, month of
year, and day of month. The sequence of the data element codes is
from high order to low order (left to right>, year of century,
month of year, and day of month. Therefore, July 1, 1979 would be
expressed as 790701. DATE, when accessed by a COBOL program
behaves as if it had been described in the COBOL program as an
unsigned elementary numeric integer data item six digits in
length.

DAY is composed of the data elements year of century and day of
year. The sequence of the data element codes is from high order to
low order (left to right> year of century, day of year. Therefore,
July 1, 1979 wou 1 d be expressed as 79181. DAY, when accessed by a
COBOL program as an unsigned elementary numeric integer data item
five digits in length:

PAGE 137

TIME is composed o, the data elements hours, minutes, seconds and
hundredths of a second. TIME is based on elapsed time a,ter
midnight on a 24-hour clock basis--thus, 2: 41 p. m. would be
expressed 14410000. TIME, when accessed by a COBOL program behaves
as i, it had been described in a COBOL program as an unsigned
elementary numeric integer data item eight digits in length. The
m1n1mum value of TIME is 00000000; the maximum value of TIME is
23595999.

ACCEPT ... FROM Examples

ACCEPT
ACCEPT

YEAR-DAY FROM DAY.
CLOCK FROM TIME.

PAGE 138

,,.,---.

The ACCEPT Statement (Terminal I-0>

The ACCEPT statement causes low volume data to be accepted from
the CRT terminal and transferred to the specified data item.
ACCEPT statement phrases allow the specification of position, form
and format of the accepted data.

FORMAT

ACCEPT {identifier-1 C,UNIT {identifier-2}]
------ <literal-1 >

C,LINE <identifier-3}] C,POSITION {identifier-4}]
{literal-2 } -------- {literal-3 >

C,SIZE {identifier-5}] C,PROMPT Cliteral-5]]
{literal-4 } ------

t,ECHOJ t,CONVERTJ C,TABJ t,ERASEJ t,NO BEEPJ

t,OFFJ C,{HIGH}J C,BLINKJ C,REVERSEJ} ...

{LOW}

C,ON EXCEPTION identifier-6 imperative-statement]

The ACCEPT statement causes the transfer of data from the CRT
device. This data replaces the contents of the data item named by
identifier-1. The receiving data item must have usage DISPLAY if
ECHO is specified; otherwise, it may have any usage except INDEX.

When an ACCEPT statement contains more than one operand, the
values are transferred in the sequence in which the operands are
encountered. ACCEPT phrases apply to the previously specified
identifier-1 only. A subsequent identifier-1 in the same ACCEPT
statement will be treated as if no previous phrases have been
specified.

An ACCEPT statement may contain no mo~e than one ON EXCEPTION
phrase, and if p~esent it must be associated with the last (or
only> identifier-1.

Note: Features which require support of the
system and/or terminal hardware may not
all systems. Any features which are not
compile correctly, but will be ignored
the User's Guide for specific details.

PAGE 139

host operating
be supported on
supported will
at runtime. See

The UNIT Phrase

The UNIT phrase must be the first phrase if used.
phrases may be written in any order.

The other

The value of identifier-2 or literal-1 in the UNIT phrase
specifies the station identifier of the CRT from which the data is
to be accepted. If t'he UNIT phrase is omitted, the CRT which
executed the program will be accessed ..

The LINE Phrase

The value of identifier-3 or literal-2 in the LINE phrase
specifies the line number from which the data is to be accepted
from the screen of the CRT terminal, with 1 being the top line. If
the value is greater than the number of lines on the CRT screen,
it is adJusted to the maximum line number.

If the value is zero or the LINE phrase is not present in an
ACCEPT statement, then data is to be accepted from the next line
below the current position of the cursor on the CRT screen unless
the value specified in the POSITION phrase is also zero, in which
case the data is to be accepted from the line at the current
position of the cursor on the CRT screen. ~

The POSITION Phrase

The value of identifier-4 or literal-3 in the POSITION phrase
specifies the number of the character positions to which the
cursor is to be positioned within the specified line prior to the
accepting of data from the CRT terminal, with 1 being the leftmost
character position within a line. If the value is greater than the
maximum number of characters within a line on the CRT screen, it
is adJusted to the maximum character number.

If the POSITION phrase is not specified, a value of 1 is assumed
for the first accepted operand and O for each additional operand
accepted in the same statement. If a value of O is specified, the
data is to be accepted starting at the next field on the CRT
screen (starting character position plus size of last ACCEPT or
DISPLAY).

PAGE 140

The SIZE Phrase

The value of identifier-5 or literal-4 in the SIZE phrase
specifies the maximum number of characters to be accepted from the
CRT terminal, overriding the Data Division definition of the
field. If the SIZE phrase is not present or a value of O is
specified, then the size of identifier-1, <identifier-5, ... > is
used. A size greater than 80 is treated as equal to 80.

The size of the ,ccepted field is determined by the SIZE phrase.
The number of characters transferred from the CRT is less than or
e~ual to the size of the accepted field. Input is terminated by
depression of the return key (which is not considered part of the
input). The number of characters actually input is the size of the
source in the following:

If the receiving item is not numeric, the accepted input is
stored according to the rules of the MOVE statement for an
alphanumeric source and destination. If the receiving item is
described JUSTIFIED RIGHT, the clause will apply to the MOVE
rules.

If the receiving item is numeric, the accepted input is stored
according to the rules of the MOVE statement for a numeric
source and destination. If the CONVERT phrase is not
specified, the source has the same scale as the receiving
item. If the receiving item has a trailing sign and the
CONVERT phrase is not specified, the input must contain digits
followed by a sign character. If the CONVERT phrase is
specified, then the input is converted according to the rules
of the CONVERT phrase. The CONVERT phrase is recommended when
accepting numeric items.

The PROMPT Phrase

The presence of the ~ey word PROMPT in an ACCEPT statement causes
the data to be accepted with prompting. The action of prompting is
to display fill characters on the CRT screen in the positions from
which data is to be accepted. Literal-5 must be a single character
nonnumeric literal which specifies the fill character to be used
in prompting. If literal-5 is omitted in the PROMPT phrase, then
an underscore will be used as the fill character.

When the PROMPT phrase is not specified, then the data is to be
accepted without prompting; the original contents of the field on
the CRT will be undisturbed before accepting input.

PAQE 141

The ECHO Phrase

The presence of the key word ECHO within an ACCEPT statement
causes the contents of identifier-1 to be displayed on the screen
of the CRT termi na 1. Conversion < see CONVERT Phrase>, d ec ima 1
alignment, and Justification are performed prior to display. If
the specified size is greater than the size of the receiving
data-item, the data-item is displayed right Justified in the
accept field with leading blanks. If the specified size is less
than the size of the receiving data-item, the display is truncated
on the right. When the ECHO phrase is not specified, the original
input data remains in the accept field.

The CONVERT Phrase

If the rece1v1ng data-item is numeric, the presence of the key
word CONVERT within an ACCEPT statement causes the conversion of
an accepted field to a trailing-signed decimal field. The
trailing-sign decimal field is then stored in identifier-1. The
conversion is accomplished by a left-to-right scan and the rules:

Set the sign according to the rightmost sign given in the
input or positive if no sign is present.

Set the scale according to the rightmost period given in the
input or to zero if no period is present. If the DECIMAL POINT
IS COMMA clause was specified in the source program, a comma
replaces the period in determining the scale.

Delete all nonnumeric characters from the accepted field.

When the CONVERT phrase is not specified, or the recei~ing
data-item is not numeric, then the data is to be stored without
the above conversion.

The TAB Phrase

The presence of the key word TAB in an ACCEPT statement causes a
wait for a tab, return or backspace key in reaching the end of the
input fie 1 d; the return wi 11 then terminate input, the backspace
character will position the cursor back one character, the tab
will reposition the cursor to the beginning of the field and all
other input will be ignored. If the key word TAB is omitted, input
will automatically be terminated if the end of the input field is
encountered.

PAGE 142

.,,,._ The ERASE Phrase

The presence of the key word ERASE within an ACCEPT statement
causes the screen of the CRT to be erased prior to cursor
positioning. When the ERASE phrase is not specified, then the
screen is not erased prior to cursor positioning.

The NO BEEP Phrase

The presence of the key words NO BEEP in an ACCEPT statement
causes supression of the beep signal upon cursor positioning. If
the key words NO BEEP are omitted, a beep signal will occur upon
cursor positioning prior to data input.

The OFF Phrase

The presence of the key word OFF within an ACCEPT statement causes
data to be input from the terminal keyboard but not displayed to
the screen. Blank characters are displayed to the screen in lieu
of data characters.

The HIGH/LOW Phrase

The presence of the key word HIGH or LOW causes the PROMPT
character and the accepted data (if CONVERT and/or ECHO was
specified) to be displayed at the specified intensity.

When HIQH or LOW is not specified, the default display is HIGH.

The BLINK Phrase

The presence of the key word BLINK causes the PROMPT character,
and any displayed data, to be BLINKed. When BLINK is not
specified, no BLINK is provided.

The REVERSE Phrase

The presence of the key word REVERSE causes the PROMPT character,
and any displayed data, to be displayed in a reverse image mode.
When REVERSE is not specified, normal display is provided.

PAGE 143

The ON EXCEPTION Phrase

The presence of ON EXCEPTION causes the imperative-statement to be
executed if an invalid character is entered. The invalid character
<in ASCII format) will be placed in identifier-6 prior to
execution of the imperative-statement. The invalid character may
be determined by declaring identifier-6 as USAGE COMP-1 and
testing for its ASCII value.

When ON EXCEPTION and CONVERT are both specified and a conversion
error occurs, an error code of "98" is returned in identifier-6.

ACCEPT Examples

ACCEPT ANSWER-1, ANSWER-2.

ACCEPT START-VALUE LINE 1, POSITION K,
PROMPT, ECHO, CONVERT.

ACCEPT NEXT-N POSITION 0,
PROMPT, ECHO.

ACCEPT VEAR, LINE VR-LN, POSITION VR-POS;
MONTH, LINE MN-LN, POSITION MN-POS.

PAGE 144

The ADD Statement

The ADD statement causes two or more numeric operands to be summed
and the result to be stored.

FORMAT 1

ADD <identifier-1> t, identifier-2l

{literal-1 > t, literal-2 l

TO identifier-m CROUNDEDJ

[;ON SIZE ERROR imperative-statement]

FORMAT 2

ADD <identifier-1}, <identifier-2} t, identifier-31

{literal-1 > {literal-2 > C, literal-3 J

GIVING identifier-m CROUNDEDJ

[;ON SIZE ERROR imperative-statement]

FORMAT 3

ADD {CORRESPONDING> identifier-! TO identifier-2 tROUNDEDJ

<CORR >

[; ON SIZE ERROR imperative-statementl

In Format 1, the values of the operands preceding the word TO are
added together, then the sum is added to the current value of
identifier-m storing the result immediately into identifier-m.

In Format 2, the values of the operands preceding the word GIVING
are added together, then the sum is stored as the new value of
i dent if i er-m.

PAGE 145

In Formats 1 and 2, each identifier must refer to an elementary
numeric item, except that in Format 2 identi,ier-m following the
word GIVING must refer to either an elementary numeric item or an
elementary numeric edited item.

In Format 3, data items in identifier-1 are added to and stored in
the corresponding data items in identifier-2.

In Format 3, each identifier must refer to a group item.

Each literal must be a numeric literal.

The ROUNDED Phrase

The ADD statement may optionally include the ROUNDED phrase.

If, after decimal point alignment, the number of places in the
fraction of the result of the arithmetic operation is greater than
the number of places provided for the fraction of the
resultant-identifier, truncation is relative to the size provided
for the resultant-identifier. When rounding is requested, the
absolute value of the resultant-identifier is increased by one
(1) whenever the most significant digit of the excess is greater
than or equal to five (5).

When the low-order integer positions in a resultant identifier are
represented by the character 'P' in the picture for that
resultant-identifier, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute value
of the result exceeds the largest value that can be contained in
the associated resultant-identifier, a size error condition
exists. If the ROUNDED phrase is specified, rounding takes place
before checking for size error.

If the CORRESPONDING phrase is specified, and any of the
individual additions produces a size error condition, the
imperative-statement is not executed until all of the individual
additions are completed.

If the resultant-identifier has COMPUTATIONAL-3 usage,
is correctly detected only for data items declared
length picture clause. Therefore all COMP-3 data items
declared with an odd number of character positions.

PAGE 146

size error
with an odd

should be

I, the SIZE ERROR phrase is not speci,ied and a size error
condition exists, the value of the resultant-identifier is
undefined.

If the SIZE ERROR phrase is specified and a size error condition
exists, the value of the resultant-identifier is not altered and
the imperative statement of the SIZE ERROR phrase is executed.

The CORRESPONDING Phrase

If the CORRESPONDING phrase is
identifier-1 are ADDed to, and
corresponding items in identifier-2.

used, se 1 ec ted items
the result stored in,

within
the

Data items referenced by the CORRESPONDING phrase must adhere to
the following rules:

A data item in identifier-1 and a data item in identifier-2
must not be designated by the key word FILLER and must not
have the same data-name and the same qualifiers up to, but not
including, identifiers-! and identifier-2.

Both of the data items must be elementary numeric data items.

The description of identifier-!
contain level-number 66, 77,
clause.

and identifier-2 must not
or 88 or the USAGE IS INDEX

A data item that is subordinate to identifier-1 or
identifier-2 and contains a REDEFINES, RENAMES, OCCURS or
USAGE IS INDEX clause is ignored, as well as those data items
subordinate to the data item that contains the REDEFINES,
OCCURS, or USAGE IS INDEX clause. However, identifier-1 and
identifier-2 may have REDEFINES or OCCURS clauses or be
subordinate to data items with REDEFINES or OCCURS clauses.

CORR is an abbreviation for CORRESPONDING.

PAGE 147

ADD Examples

ADD SALARY TO SALARY.
(doubles the value of SALARY>

ADD JOHNS-PAY, PAULS-PAV, ALBERTS-PAV
GIVING COMPANY-PAY.

ADD ACCELERATION TO VELOCITY ROUNDED
ON SIZE ERROR GO TO SOUND-BARRIER.

ADD CORRESPONDING ELEMENT <X>
TO ELEMENT <Y>.

ADD CORR SUB-TOTAL-RECORD TO TOTAL-RECORD ROUNDED
ON SIZE ERROR GO TO ERR.

PAGE 148

The ALTER Statement

The ALTER statement modifies a
operations.

FORMAT

predetermined se~uence

ALTER procedure-name-1 TO [PROCEED TOJ procedure-name-2

C,procedure-name-3 TO [PROCEED TOJ procedure-name-4J ...

of

Each procedure-name-1, procedure-name-3, ... , is the name of a
paragraph that contains a single sentence consisting of a GO TO
statement without the DEPENDING phrase.

Each procedure-name-2, procedure-name-4, ... ,
paragraph or section in the Procedure Division.

is the name of a

Execution of the ALTER statement modifies the GO TO statement in
the paragraph named procedure-name-1, procedure-name-3, ... , so
that subse~uent executions of the modified GO TO statements cause
transfer of control to procedure-name-2, procedure-name-4, ... ,
respectively. Modified GO TO statements in independent segments
may, under some circumstances, be returned to their initial
states.

A GO TO statement in a section whose segment-number is greater
than or e~ual to 50 must not be referred to by an ALTER statement
in a section with a different segment-number.

PAGE 149

The CALL Statement

The CALL statement causes control to be transFerred From one
obJect program to another, within the run unit.

FORMAT

CALL <id ent i Fi er-1} [USING data-name-1 C, data-name-2J ... J
<literal-1 } -----

The execution of a CALL statement causes control to pass to the
program whose name is specified by the value of literal-1 or
identiFier-1, the 'called' program.

Literal-1 must be a nonnumeric literal.

IdentiFier-1 must be deFined as an alphanumeric data item such
that its value can be a program name.

The called program can be another COBOL program or an assembly
language program. Refer to the User's Guide for speciFic details.

Called programs may contain CALL statements. However, a called
program must not contain a CALL statement that directly or
indirectly calls the calling program.

The CALL statement may appear anywhere within a segmented program.
When a CALL statement appears in a section with a segment-number
greater than or e~ual to 50, the EXIT PROGRAM statement returns
control to the calling program.

The USING Phrase

The data-names speciFied by the USING phrase oF the CALL statement
indicate those data items available to a calling program that may
be reFerred to in the called program. The order oF appearance of
the data-names in the USING phrase of the CALL statement and the
USING phrase in the Procedure Division header is critical.
Corresponding data-names refer to a single set of data which is
available to the called and calling program. The correspondence is
posit i ona 1, not by name. In the case of index-names, no sue h
correspondence is established. Index-names in the called and
calling program always refer to separate indices.

PAGE 150

The USING phrase is included in the CALL statement only if there
is a USING phrase in the Procedure Division header of the called
program, and the number of operands in each USING phrase must be
i dent ica 1.

Each of the operands in the USING phrase must have been defined as
a data item in the File Section, Working-Storage Section, or
Linkage Section, and must have a level-number of 01 or 77.
Data-name-1, data-name-2, ... , may be q,ualified when they
reference data items defined in the File Section.

CALL Examples:

CALL "SUBPRQt 11.

CALL REORDER
USING TABLE, INDEX-1, RESULT.

PAGE 151

The CLOSE Statement <Se~uential I-0)

The CLOSE statement terminates the processing of files.

FORMAT

CLOSE file-name-1 C<REEL> CWITH NO REWINDll

<UNIT>

CWITH <NO REWIND> l

<LOCK }

C,file-name-2 C<REEL> CWITH NO REWIND] l l ...

<UNIT>

[WITH <NO REWIND} l

<LOCK

The function of a CLOSE statement
the operating system to close
OUTPUT, the operating system also
file.

}

(with no options) is to cause
the file. For files opened for

writes an EOF as it closes the

If a STOP RUN statement is executed prior to closing the file, the
operating system will close the file without an EOF.

A CLOSE statement may only be executed for a file in an open mode.

Once a CLOSE statement has been executed for a file, no other
statement can be executed that references that file, either
explicitly or implicitly, unless an intervening OPEN statement for
that file is executed.

The execution of a CLOSE statement causes the value of the FILE
STATUS data-item, if any, associated with file-name-1
<file-name-2, ... > to be updated.

PAGE 152

The REEL and UNIT Phrases

The CLOSE REEL and CLOSE UNIT statements are documentary only and
may be included or omitted at the user's discretion.

The NO REWIND Phrase

CLOSE WITH NO REWIND prevents page advancing on files assigned to
the printer. It has no effect on other f!i les.

The LOCK Phrase

The f!unction of the CLOSE WITH LOCK statement is to perform the
CLOSE function and set a flag to prevent the file from being
OPENed again during execution of this program.

CLOSE Examples

CLOSE TRANSACTION-FILE.

CLOSE DATA-BASE WITH LOCK.

CLOSE PRINT-FILE WITH NO REWIND.

PAGE 153

The CLOSE Statement <Relative and Indexed I/0)

The CLOSE statement terminates the processing of files.

FORMAT

CLOSE file-name-1 [WITH LOCKJ

C,file-name-2 [WITH LOCKJ]

The function
the operating
OUTPUT, the
the file.

of a CLOSE statement (with no options> is to cause
system to close the file. For files opened for
operating system also writes an EOF prior to closing

If a STOP RUN statement is executed prior to closing the file, the
operating system will close the file without an EOF.

The files referenced in the CLOSE statement need not all have
same organization or access.

the

A CLOSE statement may only be executed for a file in an open mode.

If a CLOSE statement has been executed for a file, no other
statement can be executed that references that file, either
explicitly or implicitly, unless an intervening OPEN statement for
that file is executed.

The execution of the CLOSE statement causes the value of the
specified FILE STATUS data item, if any, associated with
file-name-1 (file-name-2, ... > to be updated.

The LOCK Phrase

The function of the CLOSE WITH LOCK statement is to perform the
CLOSE function and set a flag to prevent the file from being
OPENed during the execution of the program.

CLOSE Examples:

CLOSE TRANSACTION-FILE.

CLOSE DATA-BASE WITH LOCK.

PAGE 154

The COMPUTE Statement

The COMPUTE statement assigns the value of an arithmetic
expression to a data item.

FORMAT

COMPUTE identifier-1 CROUNDEDJ = arithmetic-expression

[; ON SIZE ERROR imperative-statement]

Identifier-1 must refer to either an elementary numeric item or an
elementary numeric edited item.

An arithmetic expression consisting of a single identifier or
literal provides a method of setting the value of identifier-1
eq_ual to the value of the single identifier or literal.

The COMPUTE statement allows the user to combine arithmetic
operations without the restrictions on composite operands and/or
receiving data items imposed by the arithmetic statements ADD,
SUBTRACT, MULTIPLY and DIVIDE.

Note: Exponentiation is not supported.

The ROUNDED Phrase

The COMPUTE statement may optionally include the ROUNDED phrase.
If, after decimal point alignment, the number of places in the
fraction of the result of an arithmetic operation is greater than
the number of places provided for the fraction of the
identifier-1, truncation is relative to the size provided for the
identifier-1. When rounding is req_uested, the absolute value of
the resultant-identifier is increased by one (1) whenever the most
significant digit of the excess is greater than or eq_ual to five
(5).

When the low-order integer positions in an identifier-1
represented by the character 'P' in the picture for
identifier, rounding or truncation occurs relative to
rightmost integer position for which storage is allocated.

PAGE 155

are
that
the

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute value
of the result exceeds the largest value that can be contained in
identifier-1, a size error condition exists. If the ROUNDED phrase
is specified, rounding takes place before checking for size error.

If identifier-1 has COMPUTATIONAL-3 usage, size error is detected
only for data items d~clared with an odd length picture clause.
Therefore all COMP-3 data items should be declared with an odd
number of character positions.

Division by zero always causes a size error condition.

If the SIZE ERROR phrase is not specified and a size error
condition exists, the value of the identifier-1 is undefined.

If the SIZE ERROR phrase is specified and a size error condition
exists, the value identifier-1 is not altered and the
imperative-statement in the SIZE ERROR phrase is executed.

COMPUTE Examples

COMPUTE SALARY ROUNDED= WAGES* HOURS.

COMPUTE SECONDS= <<<HRS* 60) +MIN>* 60) + SEC.

COMPUTE AVERAGE= TOTAL/ KOUNT
ON SIZE ERROR MOVE OTO AVERAGE.

COMPUTE PAY <DATE) ROUNDED

=RATE* 8.

PAGE 156

The DELETE Statement <Relative and Indexed I-0)

The DELETE statement logically removes a record from a mass
storage file.

FORMAT

DELETE file-name RECORD C; INVALID KEY imperative-statementl

After the successful execution of a DELETE statement, the
identified record has been logically removed from the file and can
no longer be accessed.

The execution of a DELETE statement does not affect the contents
of the record area associated with file-name.

The associated file must be opened in the I-0 mode at the time of
execution of this statement.

For files in the sequential access mode, the last input-output
statement executed for file-name prior to the execution of the
DELETE statement must have been a successfully executed READ
statement. The system logically removes from the file the record
that was accessed by that READ statement.

For a file in random or dynamic access mode, the system logically
removes from the file that record identified by the contents of
the key data item associated with file-name. If the file does not
contain the record specified by the key, an INVALID KEV condition
exists.

The execution of the DELETE
specified FILE STATUS data item,
to be updated.

The INVALID KEV Phrase

statement causes the value of the
if any, associated with file-name

The INVALID KEV phrase must not be specified for a DELETE
statement which references a file which is in sequential access
mode.

The INVALID KEV phrase must be specified for a DELETE statement
which references a file which is not in sequential access mode and
for which an applicable USE procedure is not specified.

The current record pointer is not affected by the execution of a
DELETE statement.

PAGE 157

The DISPLAY Statement

The DISPLAY statement causes low volume data to be displayed on
the specified CRT terminal. DISPLAY statement phrases allow the
specification of position, form and format of the displayed data.

FORMAT

DISPLAY <<identifier-1} [,UNIT {identifier-2}J

<literal-1 } {literal-2 }

C,LINE {identifier-3}J [,POSITION <\dentifier-4}J

<literal-3 } <literal-4 }

C,SIZE <identifier-5}J C,BEEPJ C,ERASEJ>

<literal-5 }

C,<HIGH}J C,BLINKJ C,REVERSEJ}

<LOW}

The DISPLAY statement causes the contents of each operand
(identifier-1 or literal-1) to be transferred ta the CRT device in
the order listed. The sending data item must have DISPLAY usage.

When a DISPLAY statement contains more than one operand, the
values of the operands are transferred in the sequence in which
the operands are encountered.

Note: Features which require support of the host operating
system and/or terminal hardware may not be supported on
all systems. Any features which are not supported will
compile correctly, but will be ignored at runtime. See
the User's Guide for specific details.

The UNIT Phrase

The UNIT phrase, if specified, must be written first. The other
phrases may be written in any order.

The value of identifier-2 or literal-2
specifies the station identifier of the CRT
to be displayed. If the UNIT phrase is
executed the program will be accessed.

PAGE 158

in the UNIT phrase
upon which the data is
omitted, the CRT which

The LINE Phrase

The value of identifier-3 or literal-3 in the LINE phrase
specifies the line number upon which the data is to be displayed
on the screen of the CRT terminal, with one being the top line. If
the value is greater than the number of lines on the CRT screen,
it is adJusted to the maximum line number. If the value is zero or
the LINE phrase is not present in a DISPLAY statement, then data
is to be displayed on the next line below the current position of
the cursor on the CRT screen unless the value specified in the
POSITION phrase is also zero, in which case the data is to be
displayed on the line at the current position of the cursor on the
CRT screen. If incrementing to the next line generates a line
number greater than the maximum number of lines on the CRT screen,
the new line is displayed at the bottom.

The POSITION Phrase

The value of identifier-4 or literal-4 in the POSITION phrase
specifies the number of the character to which the cursor is to be
positioned within the specified line prior to the displaying of
data on the screen of the CRT terminal, with 1 being the leftmost
character position within a line. If the value is greater than the

.,,---, maximum number of characters within a 1 ine on the CRT screen, it
is adJusted to the maximum character number.

If the POSITION phrase is not specified, a value of one is assumed
for the first displayed operand and zero for each additional
operand displayed in the same statement. If a value of zero is
specified, the data is to be displayed starting at the next field
on the CRT screen (starting character position plus size of the
last ACCEPT or DISPLAY).

The SIZE Phrase

The value of identifier-5 or literal-5 in the SIZE phrase
specifies the number of characters to be displayed on the screen
of the CRT terminal, overriding the Data Division definition of
the field. If the SIZE phrase is not present or a value of zero is
specified, the size of identifier-1 or literal-1 is used. If
literal-1 is a figurative constant, the literal has a size of one.
A size greater than 80 is treated as equal to 80.

PAGE 159

If the size of the display field is less than the size of the~
sending data item, only the leftmost characters are displayed. If
the specified size is greater than the size of the sending date
item, the results are unpredictable. If the sending item is a
figurative constant, the constant fills the display field. No
conversions are made in the transfer to the display field.

The BEEP Phrase

The presence of the key word BEEP within a DISPLAY statement
causes a beep signal to occur on cursor positioning prior to the
display of the data. If the BEEP key word is omitted, no signal is
given on cursor positioning.

The ERASE Phrase

The presence of the key word ERASE within a DISPLAY statement
causes the screen of the CRT terminal to be erased before the
content of identifier-1 or literal-1 is displayed on the screen.
When the ERASE phrase is not specified, then the screen is not
erased prior to the display of the data.

The HIGH/LOW Phrase

The presence of HIGH or LOW causes the data to be displayed at the
specified intensity. When HIGH or LOW is not specified, the
default display is HIGH.

The BLINK Phrase

The presence of thekey word BLINK causes the displayed data to be
BLINKed. the normal mode is no blink.

The REVERSE Phrase

The REVERSE key word causes the data to be displayed in REVERSE
video. The normal mode is no reverse.

PAGE 160

,--.._ DISPLAY Examples

DISPLAY "FLIGHT ARRIVING AT GATE", LINE FLT-LN,
POSITION 1, ERASE; GATE-NUMBER, HIGH, BLINK.

DISPLAY "ENTER JOB CODE: ".

DISPLAY CRT-HEADER LINE 1 ERASE.

DISPLAY ZEROES SIZE 5.

DISPLAY GUOTE.

PAGE 161

The DIVIDE Statement

The DIVIDE statement divides one numeric data item into another
and stores the quotient.

FORMAT 1

DIVIDE {identifier-1> INTO identifier-2 [ROUNDED]

{literal-1 }

[;ON SIZE ERROR imperative-statement]

FORMAT 2

DIVIDE {identifier-1} INTO {identifier-2}

{literal-! } {literal-2 }

GIVING identifier-3 CROUNDEDJ

C;ON SIZE ERROR imperative-statement]

FORMAT 3

DIVIDE -Cidentifier-1} BY {identifier-2}

<literal-1 } {literal-2 }

GIVING identifier-3 CROUNDEDl

[;ON SIZE ERROR imperative-statement]

In Format 1, the value of identifier-! or literal-! is divided
into the value of identifier-2. The value of the dividend
(identifier-2) is replaced by this quotient.

In Format 2, the value of identifier-1 or literal-1 is divided
into the value of identifier-2 or literal-2 and the result is
stored in identifier-3.

PAGE 162

In Format 3, the value of identifier-1 or literal-1 is divided by
the value of identifier-2 or literal-2 and the result is stored in
identifier-3.

Each identifier must refer to an
that any identifier associated
to either an elementary numeric
edited item.

elementary numeric item, except
with the GIVING phrase must refer
item or an elementary numeric

Each literal must be a numeric literal.

The ROUNDED Phrase

The DIVIDE statement may optionally include the ROUNDED phrase.

If, after decimal point alignment, the number of places in the
fraction of the result of an arithmetic operation is greater than
the number of places provided for the fraction of the
resultant-identifier, truncation is relative to the size provided
for the resultant-identifier. When rounding is requested, the
absolute value of the resultant-identifier is increased by one
(1) whenever the most significant digit of the excess is greater
than or equal to five (5).

When the low-order integer positions in a resultant identifier are
represented by the character 'P' in the picture for that
resultant-identifier, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute value
of the result exceeds the largest value that can be contained in
the associated resultant-identifier, a size error condition
exists. If the ROUNDED phrase is specified, rounding takes place
before checking for size error.

If the resultant-identifier has COMPUTATIONAL-3 usage, size error
is detected only for data items declared with an odd length
picture clause. Therefore all COMP-3 data items should be declared
with an odd number of character positions.

Division by zero always causes a size error condition.

If the SIZE ERROR phrase
condition exists, the
undefined.

is not
value of

PAGE 163

specified and a size error
the resultant-identifier is

If the SIZE ERROR phrase is specified and a size error condition~
exists, the value of the resultant-identifier is not altered and
the imperative statement in the SIZE ERROR phrase is executed.

DIVIDE Examples

DIVIDE 10 INTO TOTAL-WORK-LOAD
GIVING MORRISS-WORK-LOAD

DIVIDE TOTAL-WORK-LOAD BY 2. 5
GIVING ALFREDS-WORK-LOAD ROUNDED
ON SIZE ERROR GO TO ALFRED-QUIT.

DIVIDE 2. 5 INTO TOTAL.

PAGE 164

The EXIT Statement

The EXIT statement provides a common end point for a series of
procedures or the logical end of a called program.

FORMAT

EXIT CPROGRAMl.

The EXIT statement must appear in a sentence by itself.

The EXIT sentence must be the only sentence in the paragraph.

An EXIT statement without the word PROGRAM serves only to enable
the user to assign a procedure-name to a given point in a program.
Such an EXIT statement has no other effect on the compilation or
execution of the program.

An execution of an EXIT PROGRAM statement in a CALLED program
causes control to be passed to the calling program. Execution of
an EXIT PROGRAM statement in a program which is not called behaves
as if the statement were an EXIT statement without the word
PROGRAM.

PAGE 165

The GO TO Statement

The GO TO statement causes control to be transferred from one part
of the Procedure Division to another.

FORMAT 1

GO TO procedure-name-1.

FORMAT 2

GO TO procedure-name-1 C,procedure-name-2J ... ,

procedure-name-n DEPENDING ON identifier-!.

If a Format 1 GO TO statement appears in a consecutive sequence of
imperative statements within a sentence, it must appear as the
last statement in that sequence.

When a Format 1 GO TO statement is executed, control is
transferred to procedure-name-1 or to another procedure-name if
the GO TO statement has been modified by an ALTER statement.

When a paragraph is referenced by an ALTER
paragraph can consist only of a paragraph header
Format-1 GO TO statement.

The DEPENDING ON Phrase

statement, that
followed by a

When a Format 2 GO TO statement is executed, control is
transferred to procedure-name-1, procedure-name-2, etc., depending
on the value of the identifier-1 being 1, 2, ... , n. If the value
of the identifier-1 is anything other than the positive or
unsigned integers 1, 2, ... , n, then no transfer occurs and
control passes to the next statement in the normal sequence for
execution.

Identifier-1 is the name of a numeric integer elementary item.

PAGE 166

The IF Statement

The IF statement causes a specified condition ta be evaluated. The
subse~uent action of the obJect program depends on whether the
value of the condition is true or false.

FORMAT

IF condition; {statement-1 > {;ELSE statement-2 >

{NEXT SENTENCE} {;ELSE NEXT SENTENCE>

Statement-1 and statement-2 represent either an imperative
statement or a ~onditional statement, and either may be followed
by a conditional statement.

When an IF statement is executed, the following transfers of
control occur:

If the condition is true, statement-1 is executed if
specified. If statement-1 contains a procedure branching or
conditional statement, control is explicitly transferred in
accordance with the rules of that statement. If statement-1
does not contain a procedure branching or conditional
statement, the ELSE phrase, if specified, is ignored and
control passes to the next executable sentence.

If the condition is true
specified instead of
specified, is ignored
executable sentence.

and the NEXT SENTENCE
statement-1, the ELSE

and control passes to

PAGE 167

phrase is
phrase, if

the next

If the condition is false, statement-1 or its surrogate NEXT ~
SENTENCE is ignored, and statement-2, if specified, is
executed. If statement-2 contains a procedure branching or
conditional statement, control is explicitly transferred in
accordance with the rules of that statement. If statement-2
does not contain a procedure branching or conditional
statement, c ontro 1 passes to the next exec utab 1 e sentence. If
the ELSE stateme.nt-2 phrase is not specified, statement-! is
ignored and control passes to the next executable sentence.

If the condition is false, and the ELSE NEXT SENTENCE phrase
is specified, statement-! is ignored, if specified, and
control passes to the next executable sentence.

Statement-! and/or statement-2 may contain an IF statement. In
this case the IF statement is said to be nested.

IF statements within IF statements may be considered as paired IF
and ELSE combinations, proceeding from left to right. Thus, any
ELSE encountered is considered to apply to the immediately
preceding IF that has not been already paired with an ELSE.

The ELSE NEXT SENTENCE phrase may be omitted if it immediately
precedes the terminal period of the sentence.

IF Examples

IF CHAR-STR IS ALPHABETIC,
MOVE CHAR-STR TO ALPHA-STR;

ELSE IF CHAR-STR IS NUMERIC,
MOVE CHAR-STR TO NUM;
DISPLAY NUM;

ELSE NEXT SENTENCE.

IF NUM = OLD-NUM GO TO RE-SET.

IF ALPHA-STR NOT= "TEST"
ADD 1 TO ERROR-CNT.

IF NUM < LIMIT, ADD 1 TO NUM.

IF NUM IS LESS THAN LIMIT
ADD 1 TO NUM.

IF PRINT-SWITCH PERFORM PRINT-ROUTINE.

PAGE 168

The INSPECT Statement

The INSPECT statement provides the ability to tally (Format 1),
replace (Format 2), or tally and replace (Format 3) occurrences of
single characters or groups of characters in a data item.

FORMAT 1

INSPECT identifier-1

TALLYING identifier-2 FOR {{ALL } {identifier-3>>
-------- {literal-1 >

{{LEADING} >

{ CHARACTERS }

[{BEFORE} INITIAL {identifier-4l}J
------ {literal-2 >

{AFTER}

FORMAT 2

INSPECT identifier-1

REPLACING <<ALL > {identifier-5}} BY {identifier-6}
--------- <literal-3 > {literal-4 >

<<LEADING> >

{{FIRST >

{ CHARACTERS

}

}

C<BEFORE> INITIAL {identifier-7}]
------ {literal-5 >

{AFTER>

PAGE 169

FORMAT 3

INSPECT identifier-1

TALLYING identifier-2 FOR {{ALL > {identifier-3>>
-------- {literal-1 >

<<LEADING} }

{ CHARACTERS }

[{BEFORE} INITIAL {identifier-4}l
------ {literal-2 >

<AFTER>

REPLACING {{ALL > {identifier-5}} BY -Cidentifier-6}
--------- {literal-3 > {literal-4 >

<<LEADING> >

<<FIRST >

{ CHARACTERS

}

}

[{BEFORE> INITIAL -Cidentifier-7>l
------ {literal-5 }

<AFTER}

Identifier-1 must reference either a group item or any category of
elementary item, described (either implicitly or explicitly> as
usage is DISPLAY.

Identifier-3 ... identifier-n must reference either an elementary
alphabetic, alphanumeric or numeric item described (either
implicitly or explicitly) as usage is DISPLAY and a size of one
character.

Each literal may be either a figurative constant <which is treated
as a one-character data item) or a nonnumeric literal one
character in length.

The general rules that apply to the INSPECT statement are:

1. Inspection <which includes the comparison cycle, the
establishment of boundaries for the BEFORE or AFTER phrase,
and the mechanism for tallying and/or replacing> begins at the
leftmost character position of the data item referenced by
i den ti f ier-1, regard 1 ess of its class, and proceeds from left ~
to right to the rightmost character position as described in
general rules 4 through 6.

PAGE 170

2. For use in the INSPECT statement, the contents of the data
item referenced by identifier-1, identifier-3, identifier-4,
identifier-5, i"dentifier-6 or identifier-7 will be treated as
fol lows:

3.

a. i den ti f i er-3, If any of identifier-1,
identifier-5, identifier-6,
as alphanumeric, the INSPECT
of each such identifier as a

or identifier-7
statement treats
character-string.

id ent if i er-4,
are described
the contents

b. If any of identi f i er-1, id ent if i er-3, ident if i er-4,
identifier-5, identifier-6, or identifier-7 are described
as alphanumeric edited, numeric edited or unsigned numeric,
the data item is inspected as though it had been redefined
as alphanumeric (see general rule 2a) and the INSPECT
statement had been written to reference the redefined data
item.

c. If any of the identifier-1, identifier-3, identifier-4,
identifier-5, identifier-6, or identifier-7 are described
as signed numeric, the data item is inspected as though it
had been moved to an unsigned numeric data item of the same
length and then the rules in general rule 2b had been
applied. (See the MOVE statement.>

In general rules 4 through 10, all references
literal-2, liter~l-3, literal-4, and literal-5
to the contents of the data item referenced by
identifier-4, identifier-5, identifier-6, and
respectively.

to literal-1,
apply eq,ually
identifier-3,
identifier-7,

4. During inspection of the contents of the data item referenced
by identifier-1, each properly matched occurrence of literal-1
is tallied <Formats 1 and 3) and/or each properly matched
occurrence of literal-3 is replaced by literal-4 (Formats 2
and 3>.

5. The comparison operation to determine the occurrences of
literal-1 to be tallied and/or occurrences of literal-3 to be
replaced, occurs as follows:

a. The character specified by literal-1, literal-3 is compared
to successive characters, starting with the leftmost
character position in the data item referenced by
identifier-1. Literal-1, literal-3 and that portion of the
contents of the data item referenced by identifier-1 match
if, and only if, they are eq,ual.

PAGE 171

b. If no match occurs in the comparison of
literal-3, the comparison is repeated starting
next character position of identifier-1.

literal-1,
with the

c. Whenever a match occurs, tallying and/or replacing takes
place as described in general rules 8 through 10. The
character position in the data item referenced by
identifier-1 immediately to the right of the character
position that caused the match is now considered to be the
leftmost character position of the data item referenced by
identifier-1, and the comparison cycle starts again with
literal-1, literal-3.

d. The comparison operation continues until the rightmost
character position of the data item referenced by
identifier-1 has participated in a match or has been
considered as the leftmost character position. When this
occurs, inspection is terminated.

e. If the CHARACTERS phrase is specified, an implied
one-character operand participates in the cycle described
in paragraphs 5a through 5d above, except that no
comparison to the contents of the data item referenced by
identifier-1 takes place. This implied character is
considered always to match the leftmost character of the
contents of the data item referenced by identifier-1
participating in the current comparison cycle.

6. The comparison operation defined in general rule 5 is affected
by the BEFORE and AFTER phrases as follows:

a. If the BEFORE and AFTER phrase is not specified, literal-1,
literal-3 or the implied operand of the CHARACTERS phrase
participates in the comparison operation as described in
general rule 5.

\
PAGE 172

b. If the BEFORE phrase is specified, the associated
literal-1, literal-3 or the implied operand of the
CHARACTERS phrase participates only in those comparison
cycles which involve that portion of the contents of the
data item referenced by identifier-1 from its leftmost
character position up to, but not including the first
occurrence of literal-2, literal-5 within the contents of
the data item referenced by identifier-1. The position of
this first occurrence is determined before the first cycle
of the comparison operation described in general rule 5 is
begun. If, on an1,,1 comparison cycle, literal-!, literal-3 or
the implied operand of the CHARACTERS phrase is not
eligible to participate, it is considered not to match the
contents of the data item referenced b1,,1 i dent if i er-1. If
there is no occurrence of literal-2, literal-5 within the
contents of the data item referenced by i den ti f ier-1, its
associated literal-1, literal-3, or the implied operand of
the CHARACTERS phrase participates in the comparison
operation as though the BEFORE phrase had not been
specified.

c. If the AFTER phrase is specified, the associated literal-1,
literal-3 or the implied operand of the CHARACTERS phrase
may participate onl1,,1 in those comparison c1,,1cles which
involve that portion of the contents of the data item
referenced by identifier-! from the character position
immediately to the right of the rightmost character
position of the first occurrence of literal-2, literal-5,
within the contents of the data item referenced by
identifier-! and the rightmost character position of the
data item referenced by identifier-1. The position of this
first occurrence is determined before the first cycle of
the comparison operation described in general rule 5 is
begun. If, on any comparison cycle, literal-!, literal-3,
or the implied operand of the CHARACTERS phrase is not
eligible to participate, it is considered not to match the
con tents of the data item referenced by i denti f i er-1. If
there is no occurrence of literal-2, literal-5 within the
contents of the data item ref er enc ed b1,,1 i den ti f i er-1, its
associated literal-!, literal-3, or the implied operand of
the CHARACTERS phrase is never eligible to participate in
the comparison operation.

Format 1

7. The contents of the data item referenced by identifier-2 is
not initialized by the execution of the INSPECT statement.

PAGE 173

8. The rules for tallying are as follows:

a. If the ALL phrase is specified, the contents of the data
item referenced by identifier-2 is incremented by one <1>
for each occurrence of literal-1 matched within the
contents of the data item referenced by identifier-1.

b. If the LEADING phrase is specified, the contents of the
data item referenced by identifier-2 is incremented by one
(1) for each contiguous occurrence of literal-1 matched
within the contents of the data item referenced by
identifier-1, provided that the leftmost such occurrence is
at the point where comparison began in the first comparison
cycle in which literal-1 was eligible to participate.

c. If the CHARACTERS phrase is specified, the contents of the
data item referenced by identifier-2 is
< 1) for each character mate h ed, in the
rule 5e, within the contents of the data
identifier-1.

incremented by one
sense of general
item referenced by

Format 2

9. The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified,
matched, in the sense of general rule 5e, in
of the data item referenced by identifier-1
1 i teral-4.

each character
the contents

is replaced by

b. When ALL is specified, each occurrence of literal-3 matched
in the contents of the data item referenced by identifier-1
is replaced by literal-4.

c. When LEADING is specified, each contiguous occurrence of
literal-3 matched in the contents of the data item
referenced by identifier-1 is replaced by literal-4,
provided that the leftmost occurrence is at the point where
comparison began in the first comparison cycle in which
literal-3 was eligible to participate.

d. When FIRST is specified, the leftmost occurrence of
literal-3 matched within the contents of the data item
referenced by identifier-! is replaced by literal-4.

PAGE 174

Format 3

10. A Format 3 INSPECT statement is interpreted and executed as
though two successive INSPECT statements specifying the same
identifier-1 had been written with one statement being a
Format 1 statement with TALLYING phrases identical to those
specified in the Format 3 statement, and the other statement
being a Format 2 statement with REPLACING phrases identical to
those specified in the Format 3 statement. The general rules
given for matching and counting apply to the Format 1
statement and the general rules given for matching and
replacing apply to the Format 2 statement.

PAGE 175

INSPECT Examples:

INSPECT word TALLYING count FOR LEADING 11 L11 BEFORE INITIAL "A",

Where word=LARGE, count=l.
Where word=ANALYST, count=O.

INSPECT word TALLYING count FOR LEADING 11 A11 BEFORE INITIAL 11 L11
•

Where word=LARGE, count=O.
Where word=ANALVST, count=l.

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING "A" BY
"E" AFTER INITIAL "L".

Where word=CALLAR, count=2, word=CALLER.
Where word=SALAMI, count=l, word=SALEMI.
Where word=LATTER, count=l, word=LETTER.

INSPECT word REPLACING ALL 11 A11 BY "G 11 BEFORE INITIAL "X".

Where word=ARXAX, word=GRXAX.
Where word=HANDAX, word=HGNDGX.

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J"
REPLACING ALL "A" BY 11 B11

•

Where word=ADJECTIVE, count=6, word=BDJECTIVE.
Where word=JACK, count=3, word=JBCK.
Where word=JUJMAB, count=5, word=JUJMBB.

INSPECT word REPLACING ALL "W" BY "G" AFTER
INITIAL "R".

Where word=RXXBGWY, word=RXXBQQV.
Where word=YZACDWBR, word=YZACDWBR.
Where word=RAWRXEB, word=RAGRXEB.

INSPECT word REPLACING CHARACTERS BY 11 B11 BEFORE INITIAL "A".

word before: 12 XZABCD
word after: BBBBBABCD

PAGE 176

The MOVE Statement

The MOVE statement transfers data, in accordance with the rules of
editing, to one or more data areas.

FORMAT 1

MOVE {identifier-1} TO identifier-2 [, identifier-3] ...

<literal }

FORMAT 2

MOVE {CORRESPONDING} identifier-1 TO identifier-2

<CORR

Identifier-1
identifier-2,

}

and literal-1
identifier-3, ... ,

represent the sending area;
represent the receiving area(s).

An index data item cannot appear as an operand of a MOVE
statement.

The data designated by literal-1 or identifier-1 is moved first to
identifier-2, then to identifier-3, The rules referring to
identifier-2 also apply to the other receiving areas. Any
subscripting or indexing associated with identifier-2, ... , is
evaluated immediately before the data is moved to the respective
data item.

Any subscripting or indexing associated with identifier-1 is
evaluated only once, immediately before data is moved to the first
of the receiving operands. The result of the statement

MOVE a < b)· TO b , c (b >

is e~uivalent to:

MOVE a (b) TO temp
MOVE temp TO b
MOVE temp TO c (b).

PAGE 177

----------------------------~ --~ -------- ---------------

Any MOVE in which the sending and receiving items are both .--------..,
elementary items is an elementary move. Every elementary item
belongs to one of the following categories: numeric, alphabetic,
alphanumeric, numeric edited, alphanumeric edited. These
categories are described in the PICTURE clause. Numeric literals
belong to the category numeric, and nonnumeric literals belong to
the category alphanumeric. The figurative constant ZERO belongs to
the category numeric. The figurative constant SPACE belongs to the
category alphabetic. All other figurative constants belong to the
category alphanumeric.

The following rules apply to an elementary move between these
categories:

1. The figurative constant SPACE, a numeric
alphanumeric edited, or alphabetic data item must
moved to a numeric or numeric edited data item.

2. A numeric literal, the figurative constant ZERO,
data item or a numeric edited data item must not
to an alphabetic data item.

edited,
not be

a numeric
be moved

3. A non integer numeric literal or a non integer numeric data
item must not be moved to an alphanumeric or alphanumeric
edited data item.

4. All other elementary moves are legal
according to the rules given below.

and peT'formed

Any necessaT'y conversion
representation to another
moves, along with any
item:

of data from one form of internal
takes place during legal elementary

editing specified for the T'eceiving data

1. When an alphanumeric edited or alphanumeT'ic item is a
receiving item, alignment and any necessary space-filling
takes place as defined under Standard Alignment Rules. If
the size of the sending item is greater than the size of
the receiving item, the excess characters are truncated on
the right after the receiving item is filled. If the
sending item is described as being signed numeric, the
operational sign will not be moved; if the operational sign
occupies a separate character position (see the SIGN
clause>, that character wi 11 not be moved and the size of
the sending item will be considered to be one less than its
actual size (in terms of standard data format characters).

PAGE 178

2. When a numeric or numeric edited item is the receiving
item, alignment by decimal point and any necessary
zero-filling takes place as defined under the Standard
Alignment Rules except where zeroes are replaced because of
editing re~uirements.

When a signed item is the receiving item, the sign of the
sending item is placed in the receiving item. (See the SIGN
clause). Conversion of the representation of the sign takes
place as necessary. If the sending item is unsigned, a
positive sign is generated for the receiving item.

When an unsigned numeric item is the receiving item, the
absolute value of the sending item is moved and no
operational sign is generated for the receiving item.

When a data item described as alphanumeric is the sending
item, data is moved as if the sending item were described
as an un$igned numeric integer.

3. When a receiving field is described as alphabetic,
Justification and any necessary space-filling takes place
as defined under the Standard Alignment Rules. If the size
of the sending item is greater than the size of the
receiving item, the excess characters are truncated on the
right after the receiving item is filled.

Any move that is not an elementary move is treated exactly as if
it were an alphanumeric to alphanumeric elementary move, except
that there is no conversion of data from one form of internal
representation to another. In such a move, the receiving area will
be filled without consideration for the individual elementary or
group items contained within either the sending or receiving area,
except as noted in the OCCURS clause.

When a sending and receiving item share a part of their storage
areas, the result of the execution of such a statement is
undefined.

PAGE 179

------------------------------------- ---------------

The CORRESPONDING Phrase

When the CORRESPONDING phrase is specified, data items in
identifier-! are moved to corresponding data items in identifier-2
according to the following rules:

A data item in identifier-1 and a data item in identifier-2
are not designated by the key word FILLER and have the same
~ualifiers up to, but not including, identifier-! and
identifier-2.

At least one of the data items is an elementary data item.

The description of identifier-! and identifier-2 must not
contain level-number 66, 77, or 88 or the USAGE IS INDEX
clause.

A data item that is subordinate to identifier-1 or
identifier-2 and contains a REDEFINES, RENAMES, OCCURS or
USAGE IS INDEX clause is ignored, as well as those data items
subordinate to the data item that contains the REDEFINES,
OCCURS, or USAGE IS INDEX clause. However, identifier-! and
identifier-2 may have REDEFINES or OCCURS clauses or be
subordinate to data items with REDEFINES or OCCURS clauses.

PAGE 180

Data in the following chart summarizes the legality of the various
t~pes of MOVE statements.

CATEGORY OF RECEIVING DATA ITEM
:---

CATEGORY OF
SENDING

DATA ITEM

ALPHANUMERICINUMERIC INTEGER
EDITED !NUMERIC NON-INTEGER

ALPHABETIC ALPHANUMERICINUMERIC EDITED
====================== ========== ============ --=-=--==----------
ALPHABETIC YES YES NO

ALPHANUMERIC YES YES YES
---------------------- ----------1------------ -------------------
ALPHANUMERIC EDITED YES YES

----------:------------
NO YES I INTEGER

NUMERIC 1------------
INON-INTEGER

----------:------------
NO NO

----------:------------
NUMERIC EDITED NO

MOVE Examples

MOVE INCOME TO TOTAL-INCOME.

MOVE 1 TO PAGE-COUNT, LINE-NUM

YES

MOVE "MARMACK INDUSTRIES" TO TITLE-HEADER.

MOVE PERSON IN FILE-RECORD TO
PERSON OF ALABAMA <I-A OF ALABAMA>,
PERSON OF CROSS-CENSUS.

MOVE NUM TO NUM-ED

MOVE TABLE-ELT <N, 1, M) TO NEXT-ENTRY
PREVIOUS-ENTRY

MOVE -36. 7 TO DEFICIT.

MOVE GUOTES TO SECTION-DIVIDER.

MOVE ZERO TO COUN-TER

MOVE ZEROES TO COUN-TER.

PAGE 181

NO

YES

YES

NO

-~---------------

The MULTIPLY Statement

The MULTIPLY statement causes numeric data items to be multiplied
and stores the result.

FORMAT 1

MULTIPLY {identifier-1}

{literal-1 }

BY identifier-2 CROUNDEDJ

[;ON SIZE ERROR imperative-statement]

FORMAT 2

MULTIPLY {identifier-1} BY {identifier-2}

{literal-1 } {literal-2

GIVING identifier-3 [ROUNDED]

[;ON SIZE ERROR imperative-statement]

In Format 1, the value of identifier-1 or literal-1 is
by the value of identifier-2. The value of the
(identifier-2) is replaced by this product.

In Format 2, the value of identifier-1 or literal-1 is
by identifier-2 or literal-2 and the result is
identifier-3.

multiplied
multiplier

multiplied
stored in

Each identifier must
that in Format 2
refer to either an
numeric edited item.

refer to a numeric elementary item, except
the identifier following the word GIVING must
elementary numeric item or an elementary

Each literal must be a numeric literal.

PAGE 182

The ROUNDED Phrase

The MULTIPLY statement may optionally include the ROUNDED phrase.

If, after decimal point alignment, the number of places in the
fraction of the result of an arithmetic operation is greater than
the number of places provided for the fraction of the
resultant-identifier, truncation is relative to the size provided
for the resultant-identifier. When rounding is requested, the
absolute value of the resultant-identifier is increased by one
(1) whenever the most significant digit of the excess is greater
than or eq_ual to five (5).

When the low-order integer position~ in a resultant-identifier are
represented by the character 'P' in the picture for that
resultant-identifier, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute value
of the result exceeds the largest value that can be contained in
the associated resultant-identifier, a size error condition
exists. If the ROUNDED phrase is specified, rounding takes place
before checking for site error.

If the resultant-identifier has COMPUTATIONAL-3 usage, size error
is detected only for data items declared with an odd length
picture clause. Therefore a 11 COMP-3 data items .sh ou 1 d be declared
with an odd number of character positions.

If the SIZE ERROR phrase
condition exists, the
undefined.

is
value

not
of

specified and a size error
the resultant-identifier is

If the SIZE ERROR phrase is specified and a size error condition
exists, the value of the resultant-identifier is not altered and
the imperative statement is the SIZE ERROR phrase is executed.

MULTIPLY Examples

MULTIPLY 10 BY INCOME.

MULTIPLY PRINCIPAL BY INTEREST-RATE
GIVING INTEREST ROUNDED.

MULTIPLY INFLATION-RATE BY EXPENSES
ON SIZE ERROR MOVE OTO ECONOMY-RATING.

PAGE 183

-----~--- ---------

The OPEN Statement (Se~uential I-0)

The OPEN statement initiates the processing of se4uential files.

FORMAT

OPEN <<INPUT {file-name-1 CWITH NO REWIND]} ... } ...

{OUTPUT {file-name-2 CWITH NO REWIND]} ... } ...

<I-0 {file-name-3 } ... } ...

{EXTEND <file-name-4 } ... } ... } ...

The successful execution of an OPEN statement determines the
availabilit~ of the file and results in the file being in an open
mode.

The successful execution of an OPEN statement makes the associated
record area available to the program.

The files referenced in the OPEN statement need not all have the
same organization or access.

Prior to the successful execution of an OPEN statement for a given
file, no statement can be executed that references that file,
either explicitly or implicitly.

An OPEN statement must be successfully executed prior to the
execution of any of the permissible input-output statements. In
the Permissible Statements Table below, 1 X1 at an intersection
indicates that the specified statement, used in the se4uential
access mode, may be used with the se4uential file organization and
open mode given at the top of the column.

PAGE 184

----~ ----~---------

-. Open Mode
,---------------------------------------

I Statement I Input Output I Input-Output Extend
1------------1------ --------1-------------- --------
IREAD I X X

:------------:------ --------1-------------- --------
IWRITE X X
:------------:------ --------:-------------- --------
!REWRITE X

Permissible Statements Table

A file may be opened with the INPUT, OUTPUT, EXTEND, and I-0
phrases in the same program. Following the initial execution of an
OPEN statement for a file, each subsequent OPEN statement
execution for that same file must be preceded by the execution of
a CLOSE statement, without the LOCK phrase, for that file.

Execution of the OPEN statement does not obtain or release the
first data record.

The file description
file-name-4 must be
created.

entry for
equivalent

file-name-1, file-name-3 or
to that used when this file was

The execution of an OPEN statement
specified FILE STATUS data item,
file-name-1 ... to be updated.

The INPUT Phrase

causes the
if any,

value of
associated

the
with

For files being opened with the INPUT phrase, the OPEN statement
sets the current record pointer to the first record currently
existing within the file. If no records exist in the file, the
current record pointer is set such that the next executed READ
statement for the file will result in an AT END condition.

The OUTPUT Phrase

Upon successful execution of an OPEN statement with the OUTPUT
p h-rase spec if i ed, a file is created. At that time the associated
file contains no data records.

PAGE 185

The EXTEND Phrase

When the EXTEND phrase
the file immediately
file. Subse~uent WRITE
records to the file
OUTPUT phrase.

is specified, the OPEN statement positions
following the last logical record of that

statements referencing the file will add
as though the file has been opened with the

The EXTEND phrase and NO REWIND phrase can be used only for
se~uential files. The EXTEND phrase must not be specified for a
file whose device-type is INPUT.

When the EXTEND phrase is specified and the LABEL RECORDS clause
indicates label records are present, the execution of the OPEN
statement includes the following:

The beginning file labels are processed only in the case of a
single reel/unit file.

Processing then proceeds as though the file has been opened
with the OUTPUT phrase.

The I-0 Phrase

The I-0 phrase permits the opening of a mass storage file fo1· both
input and output operations. Since this phrase implies the
existence of the file, it cannot be used if the mass storage file
is being initially created.

The I-0 phrase can be used only for mass storage files (files
assigned to the RANDOM device-type).

When the I-0 phrase is specified and the LABEL RECORDS clause
indicates that label records are present, the execution of the
OPEN includes the following:

The labels are checked.

New labels are written.

The OPEN statement sets the current record pointer to the first
record currently existing in the file. If no records exist in the
file, the current record pointer is set such that the next
executed READ statement for that file will result in an AT END
condition.

PAGE 186

The NO REWIND Phrase

The NO REWIND phrases can only be used with se~uential single
reel/unit files. Both phrases will be ignored if they do not apply
to the storage media on which the file resides.

If the storage medium for the file permits rewinding, the
following rule applies:

When neither the EXTEND nor the NO REWIND phrase is specified,
execution of the OPEN statement causes the file to be
positioned at its beginning.

When the NO REWIND phrase is specified,
statement does not cause the file to be
must be already positioned at its
execution of the OPEN statement.

PAGE 187

execution of the OPEN
repositioned; the file
beginning prior to the

The OPEN Statement <Relative and Indexed I-0)

The OPEN statement initiates the processing of mass storage files.

FORMAT

OPEN <<INPUT {file-name-1 } ... } .. .

{OUTPUT {file-name-2 } ... } .. .

<I-0 {file-name-3 } ... } ... } ...

The successful execution of an OPEN statement determines the
availability of the file and results in the file being in an open
mode.

The successful execution of the OPEN statement
associated record area available to the program.

makes the

The files referenced in the OPEN statement need not all have the
same organization or access.

Prior to the successful execution of an OPEN statement for a given
file, no statement can be executed that references that file,
either explicitly or implicitly.

A file may be opened with the INPUT, OUTPUT, and I-0 phrases in
the same program. Following the initial execution of an OPEN
statement for a file, each subsequent OPEN statement execution for
that same file must be preceded by the execution of ~-CLOSE
statement, with out the LOCK phrase, for that f i 1 e.

Execution of the OPEN statement does not obtain or release the
first data record.

If label records are specified for the file, the beginning labels
are processed as follows:

When the INPUT phrase is specified, the execution of the OPEN
statement causes the labels to be checked in accordance with
the System conventions for input label checking.

When the OUTPUT phrase is specified, the execution of the OPEN
statement causes the labels to be written in accordance with
the System conventions for output label writing.

PAGE 188

The behavior of the OPEN statement when label records are
specified but not present, or when label records are not
specified but are present, is undefined.

The file description entry for file-name-1 or file-name-3 must be
e~uivalent to that used when this file was created.

The execution of the OPEN statement
specified FILE STATUS data item,
file-name-1 ... to be updated.

causes the
if any,

value of
associated

the
with

An OPEN statement must be successfully executed prior to the
execution of any of the permissible input-output statements. In
the Permissible Statements Table below, 'X' at an intersection
indicates that the specified statement, used in the access mode
given for that row, may be used with the open mode given at the
top of the column.

PAGE 189

--- ,~

Open Mode

IFile Access
Mode Statement InputlOutput Input-Output

;----------- ----------- -----:------ ------------
Se~uential READ X X

Random

Dynamic

The INPUT Phrase

WRITE

REWRITE

X

X

START X X
----------- -----1------ -----------

DELETE

READ

WRITE

REWRITE

START

DELETE

READ

WRITE

X

X

X

X

X

X

X

------'------------

X

X

X

X

----------- ----- ------:------------
REWRITE X

:----------- ----- ------:------------
I START X X
1----------- ----- ------1------------
I DELETE X

Permissible Statements Table

For files being opened with the INPUT phrase, the OPEN statement
sets the current record pointer to the first record currently
existing within the file. If no records exist in the file, the
current record pointer is set such that the next executed Format 1
READ statement for the file will result in an AT END condition.

PAGE 190

The OUTPUT Phrase

Upon successful execution of an OPEN statement with the OUTPUT
phrase specified, a file is created. At that time the associated
file contains no data records.

The I-O Phrase

For files being opened with the I-O phrase, the OPEN statement
sets the current record pointer to the first record currently
existing within the file. If no records exist in the file, the
ctirrent record pointer is set such that the next executed Format 1
READ statement for the file will result in an AT END condition.

PAGE 191

The PERFORM Statement

The PERFORM statement is used to transfer control explicitly to
one or more procedures and to return control implicitly whenever
execution of the specified procedure is complete.

FORMAT 1

PERFORM procedure-name-1 [{THROUGH} procedure-name-2J

<THRU }

FORMAT 2

PERFORM procedure-name-1 [{THROUGH} procedure-name-2J

<THRU >

{identifier-1} TIMES

<integer }

FORMAT 3

PERFORM procedure-name-1 [{THROUGH} procedure-name-2J

{THRU }

UNTIL condition-1

PAGE 192

,.,,......___ ...

FORMAT 4

PERFORM procedure-name-1 [{THROUGH} procedure-name-2]

<THRU }

VARYING {identifier-2> FROM {identifier-3}

{index-name-1> {index-name-2}
{literal-1 >

BY {identifier-4> UNTIL condition-1

{literal-2 }

[AFTER {identifier-5} FROM {identifier-6}

{index-name-3} -Cindex-name-4}
{literal-3 }

BY {identifier-7} UNTIL condition-2

{literal-4 }

[AFTER {identifier-8} FROM {identifier-9}

{index-name-5} {index-name-6}
{literal-5 }

BY -Cidentifier-10} UNTIL condition-3JJ

-Cliteral-6 }

Format 1 is the basic PERFORM statement. A procedure referenced by
this type of PERFORM statement is executed once and then control
passes to the next executable statement following the PERFORM
statement.

Format 2 is the PERFORM ... TIMES. The procedures are performed the
number of times specified by integer or by the initial value of
the data item referenced by identifier-1 for that execution. If,
at the time of execution of a PERFORM statement, the value of the
data item referenced by identifier-1 is e~ual to zero or is
negative, control passes to the next executable statement
following the PERFORM statement. Following the execution of the
procedures the specified number of times, control is transferred
to the next executable statement following the PERFORM statement.

PAGE 193

During execution of the PERFORM statement, references to ,~
identifier-1 cannot alter the number of times the procedures are
to be executed from that which was indicated by the initial value
of identifier-1.

Format 3 is the PERFORM ... UNTIL. The specified procedures are
performed until the condition specified by the UNTIL phrase is
true. When the condition is true, control is transferred to the
next executable statement after the PERFORM statement. If the
condition is true when the PERFORM statement is entered, no
transfer to procedure-name-1 takes place, and control is passed to
the next executable statement following the PERFORM statement.

Format 4 is the PERFORM ... VARYING. This variation of the PERFORM
statement is used to augment the values referenced by one or more
identifiers or index-names in an orderly fashion during the
execution of a PERFORM statement. In the following discussion,
every reference to identifier as the obJect of the VARYING, AFTER
and FROM (current value) phrases also refers to index-names. When
index-name appears in a VARYING and/or AFTER phrase, it is
initialized and subsequently augmented (as described below>
according to the rules of the SET statement. When index-name
appears in the FROM phrase, identifier, when it appears in an
associated VARYING or AFTER phrase, is initialized according to
the rules of the SET statement; subsequent augmentation is as
described below.

In Format 4, when one identifier is varied, identifier-2 is set to
the value of literal-1 or the current value of identifier-3 at the
point of initial execution of the PERFORM statement; then, if the
condition of the UNTIL phrase is false, the sequence of
procedures, procedure-name-1 through procedure-name-2, is executed
once. The value of identifier-2 is augmented by the specified
increment or decrement value (the value of identifier-4 or
literal-2) and condition-1 is evaluated again. The cycle continues
until this condition is true; at which point, control is
transferred to the next executable statement following the PERFORM
statement. If condition-1 is true at the beginning of execution of
the PERFORM statement, control is transferred to the next
executable statement following the PERFORM statement.

Each identifier represents a numeric elementary item described in
the Data Division. In Format 2, identifier-1 must be described as
a numeric integer.

Each literal represents a numeric literal.

The words THRU and THROUGH are equivalent.

PAGE 194

-..

If an index-name is specified in the VARYING or AFTER phrase,
then:

The identifier in the associated FROM and BY phrases must be
an integer data item.

The literal in the associated FROM phrase must be a positive
integer.

The literal in the associated BY phrase must be a non zero
integer.

If an index-name is specified in the FROM phrase, then:

The identifier in the associated VARYING or AFTER phrase must
be an integer data item.

The identifier in the associated BY phrase must be an integer
data item.

The literal in the associated BY phrase must be an integer.

Literal in the BY phrase must not be zero.

Condition-1, condition-2, condition-3 may be any conditional
expression.

When procedure-name-1 and procedure-name-2 are both specified and
either is the name of a procedure in the declarative section of
the program then both must be procedure-names in the same
declarative section.

The data items referenced by identifier-4,
identifier-10 must not have a zero value.

identifier-7, and

If an index-name is specified in the VARYING or AFTER phrase, and
an identifier is specified in the associated FROM phrase, then the
data item referenced by the identifier must have a positive value.

When the PERFORM statement is executed, control is transferred to
the first statement of the procedure named procedure-name-1. This
transfer of control occurs only once for each execution of a
PERFORM statement. For those cases when a transfer of control to
the named procedure does take place, an implicit transfer of
control to the next executable statement following the PERFORM
statement is established as follows:

PAGE 195

-
If procedure-name-1 is a paragraph-name and procedure-name-2 /--..,
is not specified, then the return is after the last statement
of procedure-name-1.

If procedure-name-1 is a section-name and procedure-name-2 is
not specified, then the return is after the last statement of
the last paragraph in procedure-name-1.

If procedure-name-2 is specified and it is a paragraph-name,
then the return is after the last statement of the paragraph.

If procedure-name-2 is specified and it
then the return is after the last
paragraph in the section.

is a section-name,
statement of the last

There is no necessary relationship between procedure-name-1 and
procedure-name-2 except that a consecutive se~uence of operations
is to be executed beginning at the procedure named
procedure-name-1 and ending with the execution of the procedure
named procedure-name-2. In particular, QO TO and PERFORM
statements may occur between procedure-name-1 and the end of
procedure-name-2. If there are two or more logical paths to the
return point, then procedure-name-2 may be the name of a paragraph
consisting of the EXIT statement, to which all of these paths must
lead.

If control passes to these procedures by means other than a
PERFORM statement, control will pass through the last statement of
the procedure to the next executable statement as if no PERFORM
statement mentioned these procedures.

PAQE 196

ENTRANCE

V

ISet identifier-2 e~ual tol
current FROM value

V
/-----------\ True

----------------------> I Condition-1 :-------------> Exit \-----------/
V False

I Execute procedure-name-1:
THRU procedure-name-2 I

V

----------------!Augment identifier-2 with I
I current BY value

,,,.-... Flowchart for the VARYING Phrase of a PERFORM Statement Having One
Condition.

PAGE 197

In Format 4, when two identifiers are varied, identifier-2 and ~
identifier-5 are set to the current value of identifier-3 and
identifier-6, respectively.

After the identifiers have been set, condition-! is evaluated; if
true, control is transferred to the next executable statement; if
false, condition-2 is evaluated. If condition-2 is false,
procedure-name-! through procedure-name-2 is executed once, then
identifer-5 is augmented by identifier-7 or literal-4 and
condition-2 is evaluated again. This cycle of evaluation and
augmentation continues until this condition is true. When
condition-2 is true, identifier-5 is set to the value of literal-3
or the current value of identifier-6, identifier-2 is augmented by
identifier-4 and condition-! is re-evaluated. The PERFORM
statement is completed if condition-1 is true; if not, the cycles
continue until condition-1 is true.

During the execution of the procedures associated with the PERFORM
statement, any change to the VARYING variable (identifier-2 and
index-name-1>, the BY variable (identifier-4>, the AFTER variable
(identifier-5 and index-name-3), or the FROM variable
(identifier-3 and index-name-2) will be taken into consideration
and will affect the operation of the PERFORM statement.

PAGE 198

r-,-..

ENTRANCE

V

lSet identifier-2 and identifier-SI
to current FROM values

V

/-------------\ True
------------->: Condition-1 1----------------> Exit \-------------/

V False
/-------------\ True

----------->I Condition-2 1----------------\-------------/
V False

!Execute procedure-name-11
ITHRU procedure-name-2

V

--:Augment identifier-5 with I
current BY value

V

ISet identifier-5 to itsl
I current FROM value

V

IAugment identifier-2 with I
current BY value

Flowchart for the VARYING Phrase of a PERFORM Statement Having Two
Conditions.

PAGE 199

ENTRANCE

V

Set
lidentifier-2, identifier-5,

identifier-a
to current FROM values

V

/----------\ True
------------->I Conditon-1 1-----------------> Exit

\----------/
I False
V

/-----------\ True
---------->: Condition-2 1-----------------------------\-----------/

I False
V

/-----------\ True
-------->I Condition-3 1-----------

\-----------/
I False
V

Execute
lprocedure-name-11
ITHRU procedure- I

name-2

I
V

V

Set
I identifier-a
Ito its current:

FROM value

V

V

---------------- ~
Set

lidentifier-5
Ito its current:

FROM value

V

Augment Augment Augment
I identifier-a with I I identifier-5 with I I identifier-2 with I
I current BY valuel I current BY valuel I current BY value I

Flowchart for the VARYING Phrase of a PERFORM Statement Having
Three Conditions.

PAGE 200

At the termination of the PERFORM statement identifier-5 contains
the current value of identifier-6. Identifier-2 has a value that
exceeds the last setting by an increment or decrement value,
unless condition-1 was true when the PERFORM statement was
entered, in which case identifier-2 contains the current value of
id ent if i er-3.

When two identifiers are varied, identifier-5 goes through a
complete cycle (FROM, BY, UNTIL) each time identifier-2 is varied.

For three identifiers the mechanism is the same as for two
identifiers except that identifier-a goes through a complete cycle
each time that identifier-5 is augmented by identifier-7 or
literal-4, which in turn goes through a complete cycle each time
identifier-2 is varied.

After the completion of a Format 4 PERFORM statement, identifier-5
and identifier-a contain the current value of identifier-6 and
identifier-9 respectively. Identifier-2 has a value that exceeds
its last used setting by one increment or decrement value, unless
condition-1 is true when the PERFORM statement is entered, in
which case identifier-2 contains the current value of
id ent if i er-3.

If a sequence of statements referred tQ by a PERFORM statement
includes another PERFORM statement, the sequence of procedures

_...__ associated with the included PERFORM must itself either be totally
included in, or totally excluded from, the logical sequence
referred to by the first PERFORM. Thus an active PERFORM
statement, whose execution point begins within the range of
another active PERFORM statement, must not allow control to pass
to the exit of the other active PERFORM statement; furthermore,
two or more such active PERFORM statements may not have a common
exit. See the valid illustrations below.

x PERFORM a THRU m

a-----------------------------
d PERFORM f THRU J

h

m -----------------------------

f ---------

J ----------

PAGE 201

x PERFORM a THRU m

a---------------------------
d PERFORM f THRU J

f ---------

J ----------

m ---------------------------

x PERFORM a THRU m

a --------------------------

f ---------

m --------1-----------------
J ----------

d PERFORM f THRU J

A PERFORM
independent
declarative
only one of

statement that appears in a section that is not in an
segment can have within its range, in addition to any
sections whose execution is caused within that range,

the following:

Sections and/or paragraphs wholly contained in one or more
non-independent segments.

Sections and/or paragraphs wholly contained in a single
independent segment.

A PERFORM statement that appears in an independent segment can
have within its range, in addition to any declarative sections
whose execution is caused within that range, only one of the
following:

Sections and/or paragraphs wholly contained in one or more
non-independent segments.

Sections and/or paragraphs wholly contained in the same
independent segment as the PERFORM statement.

PAGE 202

The READ Statement <Se~uential I/0)

The READ statement makes available the next logical record from a
file.

FORMAT

READ file-name RECORD [INTO identifierJ

[;AT END imperative-statement]

The associated file must be open in the INPUT or I-0 mode at the
time this statement is executed.

The record to be made available by the READ statement is
determined as follows:

If the current record pointer was positioned by the execution
of the OPEN statement, the record pointed to by the current
record pointer is made available.

If the current rec9rd pointer was positioned by the execution
of a previous READ statement, the current record pointer is
updated to point to the next existing record in the file and
then that record is made available.

The execution of the READ statement causes the value of the FILE
STATUS data item, if any, associated with file-name to be updated.

When the logical records of a file are described with more than
one record description the contents of any data items which lie
beyond the range of the current data record are undefined at the
completion of the execution of the READ statement.

If, at the time of execution of a READ statement, the position of
the current record pointer for that file is undefined, the
execution of that READ statement is unsuccessful.

Following the unsuccessful execution of any READ statement, the
contents of the associated record area and the position of the
current record pointer are undefined.

PAGE 203

The INTO Phrase

If the INTO phrase is specified, the record being read is moved
from the record area to the area specified by identifier according
to the rules specified for the MOVE statement. The implied MOVE
does not occur if the execution of the READ statement was
unsuccessful. Any subscripting or indexing associated with
identifier is evaluated after the record has been read and
immediately before it is moved to the data item.

When the INTO phrase is used, the record being read is available
in both the input record area and the data area associated with
identifier.

The INTO phrase must not be used when the input file contains
logical records of various sizes as indicated by thier record
descriptions. The storage area associated with identifier and the
record area associated with file-name must not be the same storage
area.

The AT END Phrase

If, at the time of the execution of a READ statement, no next
logical record exists in the file, the AT END condition occurs,
and the execution of the READ statement is considered
unsuccessful.

When the AT END condition is recognized the following actions are
taken in the specified order.

A value is placed into the FILE STATUS data item, if specified
for this file, to indicate an AT END condition.

If the AT END phrase is specified in the statement causing the
condition, control is transferred to the AT END
imperative-statement. Any USE procedure specified for this
file is not executed.

If the AT END phrase is not specified, then a USE procedure
must be specified, either explicitly or implicitly, for this
file and that procedure is executed.

When the AT END condition has been recognized, a READ statement
for that file must not be executed without first executing a
successful CLOSE statement followed by the execution of a
successful OPEN statement for that file.

The AT END phrase must be specified if no applicable USE procedure
is specified for file-name. ,..-.,_

PAGE 204

.,,,...--_..

The READ Statement (Relative and Indexed I-0)

The READ statement makes available a specified record from a mass
storage file.

FORMAT 1

READ file-name CNEXTl RECORD CWITH NO LOCK] [INTO identifier]

[;AT END imperative-statement]

FORMAT 2

READ file-name RECORD CWITH NO LOCKJ CINTO identifier]

[;KEY IS data-name]

C; INVALID KEY imperative-statement]

Format 1 must be used for all files in sequential access mode.

The NEXT phrase must be specified for files in dynamic access
mode, when records are to be retrieved sequentially.

Format 2 is used for files in random access mode or for files in
dynamic access mode when records are to be retrieved randomly.

The INVALID KEY phrase or the AT END phrase must be specified if
no applicable USE procedure is specified for file-name.

The associated files must be open in the INPUT or I-0 mode at the
time this statement is executed.

The KEY phrase may be specified only when the organization of
file-name is index. When the KEY clause is present, data-name must
be the name of one of the record keys associated with file-name.
Data-name may be qualified.

PAGE 205

The record to be made available by a Format 1 READ statement is ~
determined as follows:

The record, pointed to by the current record pointer, is made
available provided that the current record pointer was
positioned by the START or OPEN statement and the record is
still accessible through the path indicated by the current
record pointer. If the record is no longer accessible, which
may have been caused by the deletion of the record, the
current record pointer is updated to point to the next
existing record in the file and that record is then made
available.

If the current record pointer was positioned by the execution
of a previous READ statement, the current record pointer is
updated to point to the next existing record in the file and
then that record is made available.

The execution of the READ statement causes the value of the FILE
STATUS data item, if any, associated with file-name to be updated.

When the logical records of a file are described with more than
one record description, these records automatically share the same
storage area; this is equivalent to an implicit redefinition of
the area. The contents of any data items which lie beyond the
range of the current data record are undefined at the completion
of the execution of the READ statement.

If, at the time of execution of a Format 1 READ statement, the
position of current record pointer for that file is undefined, the
execution of that READ statement is unsuccessful.

The INTO Phrase

If the INTO phrase is specified, the record being read is moved
from the record area to the area specified by identifier according
to the rules specified for the MOVE statement. The implied MOVE
does not occur if the execution of the READ statement was
unsuccessful. Any subscripting or indexing associated with
identifier is evaluated after the record has been read and
immediately before it is moved to the data item.

When the INTO phrase is used, the record being read is available
in both the input record area and the data area associated with
identifier.

The INTO phrase must not be used when the input file contains
logical records of various sizes as indicated by their record
descriptions. The storage area associated with identifier and the
record area associated with file-name must not be the same storage ,-.
area.

PAGE 206

Following the unsuccessful execution of any READ statement, the
contents of the associated record area and the position of the
current record pointer are undefined.

For relative files if the RELATIVE KEY phrase is specified, the
execution of a Format 1 READ statement updates the contents of the
RELATIVE KEY data item such that it contains the relative record
number of the record made available.

For relative files the execution of a Format 2 READ statement sets
the current record pointer to, and makes available, the record
whose relative record number is contained in the data item named
in the RELATIVE KEY phrase for the file. If the file does not
contain such a record, the INVALID KEV condition exists and
execution of the READ statement is unsuccessful.

For an
the same
key of
they are
execution
values.

indexed file being sequentially accessed, records having
duplicate value in an alternate record key which is the
reference are made available in the same order in which

released by execution of WRITE statements, or by
of REWRITE statements which create such duplicate

For an indexed file if the KEY phrase is specified in a Format 2
READ statement, data-name is established as the key of reference
for this retrieval. If the dynamic access mode is specified, this
key of reference is also used for retrievals by any subsequent
executions of Format! READ statements for the file until a
different key of reference is established for the file.

If the KEY phrase is not specified in a Format 2 READ statement,
the prime record key is established as the key of reference for
this retrieval.

If the dynamic access mode is specified, this key of reference is
also used for retrievals by any subsequent executions of Format 1
READ statements for the file until a different key of reference is
established for the file.

For indexed files the execution of a Format 2 READ statement
causes the value of the key of reference to be compared with the
value contained in the corresponding data item of the stored
records in the file, until the first record having an equal value
is found. The current record pointer is positioned to this record
which is then made available. If no record can be so identified,
the INVALID KEY condition exists and execution of the READ
statement is unsuccessful.

PAGE 207

The AT END Phrase

If, at the time of the execution of a Format 1 READ statement, no
next logical record exists in the file, the AT END condition
occurs, and the execution of the READ statement is considered
unsuccessful.

When the AT END condition is recognized, the following actions are
taken in the specified order:

A value is placed into the FILE STATUS data item, if specified
for this file, to indicate an AT END condition.

If the AT END phrase is specified in the statement causing the
condition, control is transferred to the AT END
imperative-statement. Any USE procedure specified for this
file is not executed.

If the AT END phrase is not specified, then a USE procedure
must be specified, either explicitly or implicitly, for this
file, and that procedure is executed.

When the
input-output
unsuccessful.

AT END
statement

condition
which

occurs, execution of
caused the condition

the
is

When the AT END condition has been recognized, a Format 1 READ
statement for that file must not be executed without first
executing one of the following:

A successful CLOSE statement followed by the execution of a
successful OPEN statement for that file.

A successful START statement for that file.

A successful Format 2 READ statement for that file.

For a file for which dynamic access mode is specified, a Format 1
READ statement with the NEXT phrase specified causes the next
logical record to be retrieved from the file.

PAGE 208

-~ The REWRITE Statement (Seq_uential I/0)

The REWRITE statement logically replaces a record existing in a
mass storage file.

FORMAT

REWRITE record-name CFROM identiferl

Record-name and identifier must not refer to the same storage
area.

Record-name is the name of a logical record in the File Section of
the Data Division and may be qualified.

The file associated with record-name must be a mass storage file
and must be open in the I-0 mode at the time of execution of this
statement.

The last input-output statement executed for the associated file
prior to the execution of the REWRITE statement must have been a
successfully executed READ statement.

The number of character positions in the record referenced by
record-name must be eq_ual to the number of character positions in
the record being replaced.

The logical record released by successful execution of the REWRITE
statement is no longer available in the record area.

The current record pointer is not affected by the execution of a
REWRITE statement.

The execution of the REWRITE statement causes the value of the
FILE STATUS data item, if any, associated with the file to be
updated.

PAGE 209

The FROM Phrase

The execution of a REWRITE statement with the FROM phrase is
e~uivalent to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without
the FROM phrase. The contents of the record area prior to the
execution of the implicit MOVE statement have no effect on the
execution of the REWRITE statement.

PAGE 210

The REWRITE Statement <Relative and Indexed I-0)

The REWRITE statement logically replaces a record existing in a
mass storage file.

FORMAT

REWRITE record-name [FROM identifier]

[; INVALID KEY imperative-statement]

Record-name and identifier must not refer to the same storage
area.

Record-name is the name of a logical record in the File Section of
the Data Division and may be qualified.

For relative files the INVALID KEY phrase must not be specified
for a REWRITE statement which references a file in sequential
access mode.

The INVALID KEY phrase must be specified in the REWRITE statement
for files in the random or dynamic access mode for which an
appropriate USE procedure is not specified.

For indexed files the INVALID KEY phrase must be specified in the
REWRITE statement for files for which an appropriate USE procedure
is not specified.

The file associated with record-name must be open in the I-0 mode
at the time of execution of this statement.

For files in the sequential access mode, the last input-output
statement executed for the associated file prior to the execution
of the REWRITE statement must have been a successfully executed
READ statement without the WITH NO LOCK phrase.

The number of character positions in the record referenced by
record-name must be equal to the number of character positions in
the record being replaced.

The logical record released by a successful execution of the
REWRITE statement is no longer available in the record area.

PAGE 211

The current record pointer is not affected by the execution of a
REWRITE statement.

The execution of the REWRITE statement causes the value of the
FILE STATUS data item, if any, associated with the file to be
updated.

The INVALID KEY Phrase

For a relative file accessed in either random or dynamic access
mode, the System logically replaces the record specified by the
contents of the key data item associated with the file. If the
file does not contain the record specified by the key, the INVALID
KEY condition exists.

For indexed files the INVALID KEY condition exists when:

The access mode is sequential and the value contained in the
prime record key data item of the record to be replaced is not
equal to the value of the prime record read from the field, or

The value contained in the prime record key item does not
equal that of any record stored in the file.

When the INVALID KEY condition exists the updating operation does
not take place and the data in the record area is unaffected.

The FROM Phrase

The execution of a REWRITE statement with the FROM phrase is
equivalent to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without
the FROM phrase. The contents of the record area prior to the
execution of the implicit MOVE statement have no effect on the
execution of the REWRITE statement.

PAQE 212

,,,,---.-_. The SET Statement

-

The SET statement establishes reference points for table handling
operations bv setting index-names associated with table elements.

FORMAT 1

SET {identifier-1} C, identifier-2] ... } TO {identifier-3}
{index-name-3}

{index-name-1> C, index-name-2] {integer-1 >

FORMAT 2

SET index-name-4 C, index-name-5] . . . {UP BY } -Cidentifier-4}

{DOWN BY} -Cinteger-2 }

All references
apply e(lually to
respec ti vel y.

to index-name-1, identifier-1, and index-name-4
index-name-2, identifier-2, and index-name-5,

Identifier-1 and identifier-3 must name either index data items,
or elementarv items described as an integer.

Identifier-4 must be declared as an elementary numeric integer.

Integer-1 and integer-2 may be signed. Integer-1 must be positive.

Index-names are considered related to a given table and are
defined by being specified in the INDEXED BY clause.

If index-name-3 is specified, the value of the index before the
execution of the SET statement must correspond to an occurrence
number of an element in the associated table.

If index-name-4, inde x-name-5 is specified, the value of the index
both before and after the execution of the SET statement must
correspond to an occurrence number of an element in the associated
table. If index-name-1, index-name-2 is specified, the value of
the index after the execution of the SET statement must correspond
to an occurrence number of an element in the associated table. The
value of the index associated with an index-name after the
execution of a PERFORM statement may be undefined.

PAGE 213

In Format 1, the following action occurs:

Index-name-1 is set to a value causing it to refer to the
table element that corresponds in occurrence number to the
table element referenced by index-name-3, identifier-3, or
integer-1. If identifier-3 is an index data item, or if
index-name-3 is related to the same table as index-name-1, no
conversion takes place.

If identifier-! is an index data item, it may be set equal to
either the contents of index-name-3 or identifier-3 where
identifier-3 is also an index data item; no conversion takes
place in either case.

If identifier-! is not an index data item, it may be set only
to an occurrence number that corresponds to the value of
index-name-3. Neither identifier-3 nor integer-! can be used
in this case.

The process is repeated for index-name-2, identifier-2, etc.,
if specified. Each time the value of index-name-3 or
identifier-3 is used as it was at the beginning of the
execution of the statement. Any subscripting or indexing
associated with identifier-!, etc., is evaluated immediately
before the value of the respective data item is changed.

In Format 2, the contents of index-name-4 are incremented CUP BY>
or decremented <DOWN BY> by a value that corresponds to the number
of occurrences represented by the value of integer-2 or
identifier-4; thereafter, the process is repeated for
index-name-5, etc. Each time the value of identifier-4 is used as
it was at the beginning of the execution of the statement.

Data in the following chart represents the validity of various
operand combinations in the SET statement.

Sending Item

Receiving Item
----------------------------------1
Integer Data I Index

Item Name
Index Data•

Item
------------------ ------------:---------- ----------
Integer Literal
Integer Data Item

I Index-Name
llndex Data Item

No
No

Valid
No

*No conversion takes place

PAQE 214

Val id
Valid
Valid
Valid*

No
No

Valid*
Valid*

The START Statement (Relative and Indexed I-0)

The START statement provides a basis for logical positioning
within a file, for subse~uent se~uential retrieval of records.

FORMAT

START file-name CKEY {IS EQUAL TO } data-namel
----- -----

{IS = }

<IS GREATER THAN > -------
<IS > }

{IS NOT LESS THAN}

{IS NOT < }

C; INVALID KEY imperative-statement]

Note: The re~ui red re lat i ona 1 characters '> ', '<' and '=' are
not underlined to avoid confusion with other symbols.

File-name must be the name of a file with se~uential or dynamic
access.

Data-name may be ~ualified.

The INVALID KEY phrase must be specified if no applicable USE
procedure is specified for file-name.

If file-name is the name of a relative file then data-name, if
specified, must be the data item specified in the RELATIVE KEY
phrase of the associated file control entry.

If file-name is the name of an indexed file then data-name, if
specified, may reference the data items specified as the record
keys associated with file-name or it may reference any data item
of category alphanumeric whose leftmost character position
corresponds to the leftmost character position of a record key
data item.

File-name must be open in the INPUT or I-0 mode at the time that
the START statement is executed.

If the KEV phrase is not specified the relational operator 'IS
EGUAL TO' is implied.

PAGE 215

The type of comparison specified by the relational operator in the~
·KEY phrase occurs between a key associated with a record in the
file referenced by file-name and a data item.

If file-name references a relative file, the data item used in
the comparison is the relative key associated with file-name.

If file-name references an indexed file, the data item used in
the comparison is either the prime record key associated with
file-name or, if the KEY phrase is specified, the data item
referenced in the KEY phrase. If the operands of the
comparison are of une~ual size, comparison proceeds as though
the longer one were truncated on the right such that its
length is e~ual to that of the shorter. All other nonnumeric
comparison rules apply except that the presence of the PROGRAM
COLLATING SEOUENCE clause will have no effect on the
comparison.

The current record pointer is positioned to the first logical
record currently existing in the file whose key satisfies the
comparison.

If the comparison is not satisfied by any record in the file,
an INVALID KEY condition exists, the execution of the START
statement is unsuccessful, and the position of the current
record pointer is undefined.

The execution of the START statement causes the value of the FILE
STATUS data item, if any, associated with file-name to be updated.

PAGE 216

The STOP Statement

The STOP statement causes 4 permanent or temporary suspension of
the execution of the obJect program.

FORMAT

STOP {RUN }

{literal}

The literal may be numeric or nonnumeric or may be any figurative
constant.

If a STOP RUN statement appears
imperative statements within a
last statement in that sequence.

in a consecutive sequence of
sentence, it must appear as the

If the RUN phrase is used, then a STOP RUN message is logged and
the execution is terminated.

If STOP literal is specified, the literal is logged in a STOP
"literal-value" message and the execution is suspended.

STOP Examples:

STOP RUN.
STOP "END OF PROCEDURE".

PAGE 217

The SUBTRACT Statement

The SUBTRACT statement is used to subtract one, or the sum ol two
or more, numeric data items lrom a numeric data item and store the
resu 1 t.

FORMAT 1

SUBTRACT {identifier-1} C, identifier-2]

<literal-1 } C, literal-2]

FROM identifier-m [ROUNDED]

[;ON SIZE ERROR imperative-statement]

FORMAT 2

SUBTRACT {identilier-1} C, identilier-2]

{literal-1 } C, literal-2]

FROM {identilier-m} GIVING identifier-n [ROUNDED]

{literal-m }

[;ON SIZE ERROR imperative-statement]

FORMAT 3

SUBTRACT {CORRESPONDING} identifier-1

<CORR }

FROM identilier-2 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

In Format 1, all literals or identifiers preceding the word FROM
are added together and this total is subtracted lrom the current
value of identilier-m storing the result immediately into ,-,
id ent if i er-m.

PAGE 218

~- In Format 2, all literals or identifiers preceding the word FROM
are added together, the sum is subtracted from literal-m or
identifier-m and the result of the subtraction is stored as the
new value of identifier-n.

If Format 3 is used, data items in identifier-1 are subtracted
from and stored into corresponding data items in identifier-2.

Each identifier must refer to a numeric elementary item except
that:

In Format 2, the identifier following the word GIVING must
refer to either an elementary numeric item or an elementary
numeric edited item.

In Format 3, the identifiers must refer to group items.

Each literal must be a numeric literal.

The ROUNDED Phrase

The SUBTRACT statement may optionally include the ROUNDED phrase.

If, after decimal point alignment, the number of places in the
fraction of the result of an arithmetic operation is greater than
the number of places provided for the fraction of the
resultant-identifier, truncation is relative to the size provided
for the resultant-identifier. When rounding is re~uested, the
absolute value of the resultant-identifier is increased by one <1>
whenever the most significant digit of the excess is greater than
or e~ual to five (5).

When the low-order integer positions in a resultant-identifier are
represented by the character 'P' in the picture for that
resultant-identifier, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute value
of the result exceeds the largest value that can be contained in
the associated resultant-identifier, a size error condition
exists. If the ROUNDED phrase is specified, rounding takes place
before checking for size error.

PAGE 219

If the resultant-identifier has COMPUTATIONAL-3 usage, size error ~
is detected only for data items declared with an odd length
picture clause. Therefore, all COMP-3 data items should be
declared with an odd number of character positions.

If the SIZE ERROR phrase
condition exists, the
undefined.

is not
value of

specified and a size error
the resultant-identifier is

If the SIZE ERROR phrase is specified and a size error condition
exists, the value of the resultant-identifier(s) affected by the
size error is not altered.

If the CORRESPONDING phrase is specified, and any of the
individual subtractions produce a size error condition, the
imperative-statement is not executed until all of the individual
subtractions are completed.

The CORRESPONDING Phrase

If the CORRESPONDING phrase is used, selected items within
identifier-1 are SUBTRACTed from, and the result stored in, the
corresponding items in identifier-2. Data items referenced by the
CORRESPONDING phrase must adhere to the following rules:

A data item in identifier-! and a data item in identifier-2
must not be designated by the key word FILLER and must not
have the same data-name and the same ~ualifiers up to, but not
including, identifier-1 and identifier-2.

Both of the data items must be elementary numeric data items.

The description of identifier-!
contain level-numbers 66, 77
clause.

and
or 88

identifier-2 must not
or the USAGE IS INDEX

A data item that is subordinate to identifier-! or
identifier-2 and contains a REDEFINES, RENAMES, OCCURS or
USAGE IS INDEX clause is ignored, as well as those data items
subordinate to the data item that contains the REDEFINES,
OCCURS, or USAGE IS INDEX clause. However, identifier-! and
identifier-2 may have REDEFINES or OCCURS clauses or be
subordinate to data items with REDEFINES or OCCURS clauses.

CORR is an abbreviation for CORRESPONDING.

PAGE 220

SUBTRACT EXAMPLES

SUBTRACT TAXES FROM INCOME.

SUBTRACT 1 FROM TALLY GIVING TALLY-1.

SUBTRACT 2.68, INTEREST, PENALTY
FROM PRINCIPAL ROUNDED
ON SIZE ERROR GO TO ERROR-HANDLER.

PAGE 221

The UNLOCK Statement

The UNLOCK statement makes available to other programs the most
recently accessed record in a file that was read and locked.

FORMAT

UNLOCK file-name RECORD.

Note: The UNLOCK statement is nonstandard, but provides for
compatibility with existing programs written for
environments that allow multiple programs to concurrently
update a data file. For systems that do not provide this
capability, the UNLOCK statement will not affect execution
except as described below.

The file associated with the file-name must be open in the I-0
mode.

If no record in the file is locked, execution of an UNLOCK
statement causes no action to be taken. If a record in the file is
locked <unavailable to other programs>, the last record to be ~
locked is then made available to any other program upon execution
of the UNLOCK statement.

The current record pointer is not affected by the execution of the
UNLOCK statement. The FILE STATUS data item associated with the
file, if one exists, is updated.

The UNLOCK statement may not be used to unlock records locked by
other programs.

Note: Records that are read and locked are automatically unlocked
by any subsequent operation on that file from the same
program.

PAGE 222

The WRITE Statement <Se~uential I/0)

The WRITE statement releases a logical record for an output file.
It can also be used for vertical positioning of lines within a
logical page.

FORMAT

WRITE record-name [FROM identifier-1J

[{BEFORE} ADVANCING {{identifier-2} CLINE J}l

{AFTER> {{integer

{ PAGE

> CLINES]}

}

Record-name and identifier-! must not reference the same storage
area.

The record-name is the name of a logical record in the File
Section of the Data Division and may be qualified.

When identifier-2 is used in the ADVANCING phrase, it must be the
name of an elementary integer data item.

Integer or the value of the data item referenced by identifier-2
may be zero.

The associated file must be open in the OUTPUT or EXTEND mode at
the time of the execution of this statement.

The logical record released by the execution of the WRITE
statement is no longer available in the record area.

Upon completion of a WRITE statement, the information in the
referenced by identifier-1 is available even though
information in the area referenced by record-name may not
available.

area
the

be

The current record pointer is unaffected by the execution of a
WRITE statement.

The execution of the WRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated.

The maximum record size for a file is established at the time the
file is created and must not subsequently be changed.

PAGE 223

The number of character positions on a mass storage device
required to store a logical record in a file may or may not be
equal to the number of character positions defined by the logical
description of that record in the program.

The execution of the WRITE statement releases a logical record to
the operating system. The contents of the record area are not
changed.

When an attempt is made to write beyond the externally defined
boundaries of a sequential file, an exception condition exists.
The following action takes place:

The value of the
associated file is
violation.

FILE STATUS data item, if any, of the
set to a value indicating a boundary

If a USE AFTER STANDARD EXCEPTION declarative is explicitly or
implicitly specified for the file, that declarative procedure
will then be executed.

If a USE AFTER STANDARD EXCEPTION declarative is not
explicitly or implicitly specified for the file, the result is
undefined.

The FROM Phrase

The results of the execution of the WRITE statement with the FROM
phrase is equivalent to the execution of the statement

MOVE identifier-1 TO record-name

according to the rules specified for the MOVE statement,
by the same WRITE statement without the FROM phrase.

followed

The contents of the record area prior to the execution of the
implicit MOVE statement have no effect on the execution of this
WRITE statement.

PAGE 224

,..--..._ The ADVANCING Phrase

The ADVANCING phrase allows control of the vertical positioning of
each line on a representation of a printed page. If the ADVANCING
phrase is not used, automatic advancing will be provided by the
compiler to act as if the user had specified AFTER ADVANCING 1
LINE. If the ADVANCING phrase is used, advancing is provided as
follows:

If identifier-2 is specified, the representation of the
printed page is advanced the number of lines equal to the
current value associated with identifier-2.

If integer i$ specified, the representation of the printed
page is advanced the number of lines equal to the value of
integer.

If the BEFORE phrase is used, the line is presented before the
representation of the printed page is advanced.

If the AFTER phrase is used, the line is presented after the
representation of the printed page is advanced.

If PAGE is specified, the record is presented on the logical
page before or after (depending on the phrase used) the device
is repositioned to the next logical page.

The ADVANCING phrase is valid only if the device-type assigned to
the file is PRINT.

PAGE 225

THE WRITE STATEMENT <Relative and Indexed I-0)

The WRITE statement releases a logical record for an output or
input-output file.

FORMAT

WRITE record-name CFROM identifier]

(;INVALID KEY imperative-statement]

Record-name and identifier must not reference the same storage
area.

The record-name is the name of a logical record in the File
Section of the Data Division and may be qualified.

The INVALID KEY phrase must be specified if an applicable USE
procedure is not specified for the associated file.

The associated file must be open in the OUTPUT or I-0 mode at the
time of the execution of this statement.

The logical record released by the execution of the WRITE
statement is no longer available in the record area.

The current record pointer is unaffected by the execution of a
WRITE statement.

The execution of the WRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated.

The maximum record size for a file is established at the time the
file is created and must not subsequently be changed.

The number of character positions on a mass storage device
required to store a logical record in a file may or may not be
equal to the number of character positions defined by the logical
description of that record in the program.

The execution of the WRITE statement releases a logical record to
the operating system.

PAGE 226

---------------------------------~ -~~----------

When a relative file is opened in the output mode, records may be
placed into the file by one of the following:

If the access mode is se~uential, the WRITE statement will
cause a record to be released to the System. The first record
will have a relative record number of one (1) and subsequent
records released will have relative record numbers of 2, 3, 4,

If the RELATIVE KEV data item has been specified in the
file control entry for the associated file, the relative
record number of the record Just released will be placed into
the RELATIVE KEY data item by the System during execution of
the WRITE statement.

If the access mode is random or dynamic, prior to the
execution of the WRITE statement the value of the RELATIVE KEY
data item must be initialized in the program with the relative
record number to be associated with the record in the record
area. That record is then released to the System by execution
of the WRITE statement.

When a relative file is opened in the I-O mode and the access mode
is random or dynamic, records are to be inserted in the associated
file. The value of the RELATIVE KEY data item must be initialized
by the program with the relative record number to be associated
with the record in the record area. Execution of a WRITE
statement then causes the contents of the record area to be
released to the System.

For an indexed file, the data item specified as the prime record
key must be set by the program to the desired value prior to the
execution of the WRITE statement. Records may be placed into the
file by one of the following:

If the access mode is sequential, records must be released to
the System in ascending order of prime record key values.

If the access mode is random or dynamic, records may be
released to the System in any program-specified order.

The FROM Phrase

The results of the execution of the WRITE statement with the FROM
phrase is equivalent to the execution of the statement:

MOVE identifier-1 TO record-name

according to the rules specified for the MOVE statement,
by the same WRITE statement without the FROM phrase.

PAGE 227

followed

The contents of the record area prior to the execution of the ~.
implicit MOVE statement have no effect on the execution of this
WRITE statement.

The INVALID KEV Phrase

The INVALID KEV condition exists under the following
circumstances:

When the access mode is sequential for an indexed file opened
in the output mode, and the value of the prime record key is
not greater than the value of the prime record key of the
previous record, or

When an indexed file is opened in the output or I-0 mode, and
the value of the prime record key is equal to the value of a
prime record key of a record already existing in the file, or

When a relative file has random or dynamic access mode and the
RELATIVE KEY data item specifies a record which already exists
in the file, or

When an attempt is made to write beyond the externally defined
boundaries of the file.

When the INVALID KEY condition is recognized the execution of the
WRITE statement is unsuccessful, the contents of the record area
are unaffected and the FILE STATUS data item, if any, associated
with file-name of the associated file is set to a value indicating
the cause of the condition.

PAQE 228

APPENDIX A

ERROR MESSAGES

PAGE 229

ERROR MESSAGES <Compile Time>

The text of the source program is checked for syntax and semantic
errors as it is scanned. Errors may cause interruption in
scanning. In this case, text is ignored until a recovery point is
found and a resume message is printed. Recovery points are chosen
to minimize the amount of unanalyzed text without producing
irrelevant error messages. In any case the constructs at fault are
undermarked and error messages listed when the source line is
printed. The error message includes either E's or W's indicating
error or warning. For example:

004030 02 STOCK PIC 9(16)PPP COMPUTATIONAL.
$

***** !)PICTURE *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E

indicates a semantic number size error but

005040 02 PART PIC X(4BX<5>
$

SYNC.
$

***** !)SYNTAX *E
***** 2)SCAN RESUME *W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W

indicates a syntax error at the first undermark and a recovery to
the second undermark.

The number preceding the error message is the undermark number,
counting from left to right. More than one message may refer to
the same undermark.

Global errors such as undefined paragraph names and illegal
control transfers are listed with the program summary at the end
of the source listing.

Compilation always proceeds to the end of the program, regardless
of the number of errors found. ObJect code is produced such that
an attempt to execute an erroneous statement will terminate
execution with an appropriate error message.

PAGE 230

COMPILER ERROR MESSAGES

ACCESS CLASH
Nonse~uential access given for se~uential file.

BLANK WHEN ZERO

CLASS

COPY

BLANK WHEN ZERO clause given for nonnumeric or group
item.

The referenced identifier is not valid in a class
condition.

COPY statement failed because of permanent error
associated with the undermarked file-name.

CORRESPONDING
The CORRESPONDING phrase cannot be used with the
referenced identifier.

DATA OVERFLOW

DATA TYPE

The data area <working-storage and literals) is larger
than 65535 bytes in length.

Context does not allow data type of the referenced
identifier.

DEVICE CLASH
Random characteristics given to nonrandom device.

DEVICE TYPE
OPEN or CLOSE mode inconsistent with device type.

DOUBLE DECLARATION
Multiple declaration of a file or identifier attribute.

DOUBLE DEFINITION

DUPLICATE

Multiple definition of an identifier.

Warning only. Multiple USE procedure declared for same
function or file.

FILE DECL ERROR
The referenced file-name is SELECTed and has an invalid
or missing file description <FD>.

PAGE 231

FILE NAME ERROR ~,
The referenced file-name has an invalid external file
name declaration.

FILE NAME REQUIRED
File name not given as reference in I/0 verb.

FILE RECORD KEY ERROR
The referenced file-name has a RECORD KEY which is
incorrectly qualified or is not defined as a data item
of the category alphanumeric within a record description
entry associated with that file name.

FILE RECORD SIZE ERROR
The referenced file-name has a declared record size
which conflicts with the actual data record descriptions
or is a relative organization file with variable length
records.

FILE RELATIVE KEY ERROR
The referenced file-name has a RELATIVE KEY
incorrectly qualified, is defined in
description associated with that file-name, or
defined as an unsigned integer.

which is
a record

is not

FILE STATUS ERROR

FILE TYPE

The referenced file-name
incorrectly qualified,
WORKING-STORAGE SECTION,
alphanumeric item.

Access or organization
undermarked statement.

has a status item which is
is not defined in the
or is not a two-character

of file conflicts with

FILLER LEVEL
A nonelementary FILLER item is declared.

GROUP CLASH
USAGE or VALUE clause of group member conflicts with
same clause for group.

GROUP VALUE CLASH

IDENTIFIER

Warning only. An item subordinate to a group with the
VALUE IS clause is described with the SYNCHRONIZED,
JUSTIFIED, or USAGE (other than USAGE IS DISPLAY>
clause.

Identifier reference is incorrectly constructed or the
identifier has an invalid or double definition.

PAGE 232

ILLEGAL ALTER
An ALTER statement references an unalterable paragraph
or violates the rules of segmentation.

ILLEGAL PERFORM
A PERFORM statement references undefined or incorrectly
qualified paragraph or the reference violates the rules
of segmentation.

INVALID ID
The referenced identifier was not successfully defined.

INVALID PARAGRAPH
Context does not allow section name.

JUSTIFY
JUSTIFY clause given in conflict with other attributes.

KEY REOUIRED

LABEL

LEVEL

LINKAGE

Relative key not declared for random access relative
file or record key not declared for indexed file.

Presence or absence of label record conflicts with
device standards.

Level-number given is invalid either intrinsically or
because of position within a group.

An identifier in the USING clause of the PROCEDURE title
is not a linkage item or a statement references a
linkage item not subordinate to an identifier in the
USING clause of the PROCEDURE title.

LITERAL VALUE
Literal value given is incorrect in context.

MOVE
Operands of MOVE verb specify an invalid move.

MUST BE INTEGER
Context requires decimal integer.

MUST BE PROCEDURE
Context requires procedure name either as reference or
definition, or the reference must be a nondeclarative
procedure-name.

MUST BE SECTION
Context requires procedure-name to be section.

PAGE 233

NESTING
Illegal nesting of condition that is not
condition.

an IF

NOT IN REDEFINE

OCCURS

VALUE IS clause given in REDEFINES item.

Occurs clause given at invalid level or after three have
been given for the same item.

OCCURS DEPENDING ERROR
The referenced obJect of a DEPENDING phrase has not been
defined correctly.

OCCURS-VALUE CLASH
VALUE IS and OCCURS in effect for the same item.

PICTURE
Invalid picture syntax.

PICTURE-BWZ CLASH
Zero suppression and BLANK WHEN ZERO cannot be in effect
for the same item.

PICTURE-USAGE CLASH
USAGE clause or implied usage conflicts with usage
implied by picture.

PROCEDURE INDEPENDENCE
PERFORM given for procedures in independent segments not
in the current segment.

PROGRAM OVERFLOW

RECORD KEY

The instruction area is larger than 32767 bytes in
length.

Record key declared for other than an indexed
organization file or a START statement KEY phrase
references a data item not aligned on the declared key's
1 eftmost byte.

RECORD REQUIRED

REDEFINES

Context requires record name.

REDEFINES given within an OCCURS or not redefining the
last allocated item.

PAGE 234

-------·-----------· --

,.,,--...

REDEFINES ERROR
The referenced data-name redefines an item which does
not have the same number of character positions and is
not level 01.

REFERENCE INVALID
Reference given is not valid in context.

RELATION
Operands of relation test are incompatible.

RELATIVE KEV
Relative key declared for other than a relative
organization file or a START statement KEY phrase
references a data item other than the declared key.

RESERVED WORD CONFLICT
A COBOL reserved word or symbol is given where a user
word is req_uired. In the summary this is only a warning
about an ANSI COBOL reserved word that is not an
implemented COBOL reserved word.

SCAN RESUME
Warning only. Scanning was terminated at previous error
message and resumes at undermarked character.

SECTION CLASH

SEGMENT

SEPARATOR

SIGN

SIZE

SIZE ERROR

A VALUE IS clause appears in the FILE or LINKAGE
section.

Warning only. Segment number given in an independent
segment is not the same as the current segment or the
number of a new independent segment.

Warning only. Redundant punctuation or a separator is
not followed by the req_uired space.

SIGN clause given in conflict with usage and picture.

Warning only. Size of data referenced not correct for
context.

Declared
reference.

size of

PAGE 235

record conflicts with present

SUBSCRIPT

SYNC

SYNTAX

UNDEFINED

Incorrect number of subscripts or indices
reference.

Synchronized clause given for a group item.

for

Incorrect character or reserved word given for context.

File referenced in FD entry was not defined.

a

UNDEFINED DECLARATIVE PROCEDURE
A declarative statement references a procedure not
defined within the DECLARATIVES.

UNDEFINED PROCEDURE
A GO TO statement references an undefined or incorrectly
~ualified paragraph.

USE REGUIRED
A DECLARATIVES section must begin with a USE statement.

USING COUNT
Warning only. The item count in the USING list of a CALL
statement is different from that of the first reference
to the same program name.

VALUE ERROR

VALUE

VARIABLE

Value given in VALUE IS re~uired truncation of nonzero
digits.

VALUE IS clause given in conflict with other detlared
attributes.

nE:CORD
Warning only. The INTO phrase is not allou,ed with
variable size records.

PAGE 236

--

APPENDIX B

RESERVED WORDS

.,,,--....

PAGE 237

RESERVED WORD LIST

The following is a list of RM/COBOL reserved words where:

* denotes reserved words not reserved in ANSI standard COBOL

+ denotes ANSI COBOL reserved words not reserved by the
compiler. Their appearance will generate a warning at the end
of the compilation listing.

** denotes system-name.

ACCEPT
ACCESS
ADD
ADVANCING
AFTER
ALL

*BEEP
BEFORE
BLANK

CALL
+CANCEL
+CD
+CF
+CH

CHARACTER
CHARACTERS

+CLOCK-UNITS
CLOSE

+COBOL
+CODE

DATA
DATE

+DATE-COMPILED
DATE-WRITTEN
DAY

+DE
+DEBUG-CONTENTS
+DEBUG-ITEM
+DEBUG-LINE
+DEBUG-NAME

ALPHABETIC
+ALSO

ALTER
ALTERNATE
AND
ARE

*BLINK
BLOCK

+BOTTOM

+CODE-SET
COLLATING

+COLUMN
COMMA

+COMMUNICATION
COMP

*COMP-1
*COMP-3

COMPUTATIONAL
*COMPUTATIONAL-1
*COMPUTATIONAL-3

+DEBUG-SUB-1
+DEBUG-SUB-2
+DEBUG-SUB-3
+DEBUGGING

DECIMAL-POINT
DECLARATIVES
DELETE

+DELIMITED
+DELIMITER

DEPENDING

PAGE 238

AREA
+AREAS
+ASCENDING

ASSIGN
AT
AUTHOR

BY

COMPUTE
CONFIGURATION
CONTAINS

+CONTROL
+CONTROLS
*CONVERT

COPY
CORR
CORRESPONDING

+COUNT
CURRENCY

+DESCENDING
+DESTINATION
+DETAIL
+DISABLE

DISPLAY
DIVIDE
DIVISION
DOWN
DUPLICATES
DYNAMIC

*ECHO +END-OF-PAGE ERROR
+EGI +ENTER +ESI

ELSE ENVIRONMENT +EVERY
+EMI +EDP EXCEPTION
+ENABLE EGUAL EXIT

END *ERASE EXTEND

FD FILLER +FOOTING
FILE +FINAL FOR
FILE-CONTROL FIRST FROM

+GENERATE GO +GROUP
GIVING GREATER

+HEADING HIGH-VALUE
*HIGH HIGH-VALUES

I-0 INDEXED INSPECT
I-0-CONTROL +INDICATE INSTALLATION
IDENTIFICATION INITIAL INTO
IF +INITIATE INVALID
IN INPUT IS ,,,.--..__
INDEX INPUT-OUTPUT

JUST JUSTIFIED

KEV

LABEL +LIMIT LINES
+LAST +LIMITS LINKAGE

LEADING +LINAGE LOCK
LEFT +LINAGE-COUNTER LOW

+LENGTH LINE LOW-VALUE
LESS +LINE-COUNTER LOW-VALUES

MEMORY MODE +MULTIPLE
+MERGE MODULES MULTIPLY
+MESSAGE MOVE

NATIVE NO NUMERIC
+NEGATIVE NOT

NEXT +NUMBER

PAGE 239

OBJECT-COMPUTER OMITTED OR
OCCURS ON ORGANIZATION
OF OPEN OUTPUT
OFF +OPTIONAL +OVERFLOW

PAGE +PLUS +PROCEDURES
+PAGE-COUNTER +POINTER PROCEED

PERFORM POSITION PROGRAM
+PF +POSITIVE PROGRAM-ID
+PH *PRINT *PROMPT

PIC +PRINTING
PICTURE PROCEDURE

+GUEUE GUOTE GUOTES

RANDOM +REMAINDER *REVERSE
+RD +REMOVAL +REVERSED

READ RENAMES REWIND
+RECEIVE REPLACING REWRITE

RECORD +REPORT +RF
RECORDS +REPORTING +RH
REDEFINES +REPORTS RIGHT
REEL +RERUN ROUNDED

+REFERENCES +RESERVE RUN
RELATIVE +RESET

+RELEASE +RETURN

SAME SIZE +SUB-GUEUE-2
+SD +SORT +SUB-GUEUE-3
+SEARCH +SORT-MERGE SUBTRACT

SECTION +SOURCE +SUM
SECURITY SOURCE-COMPUTER +SUPPRESS

+SEGMENT SPACE **SWITCH-1
+SEGMENT-LIMIT SPACES **SWITCH-2

SELECT SPECIAL-NAMES ,
+SEND STANDARD ,

SENTENCE STANDARD-1 ,
SEPARATE START **SWITCH-8
SEGUENCE STATUS +SYMBOLIC
SEGUENTIAL STOP SYNC
SET +STRING SYNCHRONIZED
SIGN +SUB-GUEUE-1

PAGE 240

~- *TAB
+TABLE

TALLYING
+TAPE
+TERMINAL
+TERMINATE

UNIT
*UNLOCK
+UNSTRING

VALUE

WHEN
WITH

ZERO

+

=

+TEXT
THAN
THROUGH
THRU
TIME
TIMES

UNTIL
UP

+UPON

VALUES

WORDS
WORKING-STORAGE

ZEROES

:>
<

PAGE 241

TO
+TOP

TRAILING
+TYPE

USAGE
USE
USING

VARYING

WRITE

ZEROS

* I
**

APPENDIX C

GLOSSARY

PAGE 242

---·

GLOSSARY

The terms in this appendix are defined in accordance with their
meaning as used in this document describing COBOL and may not have
the same meaning for other languages.

These definitions are also intended to be either reference
material or introductory material to be reviewed prior to reading
the deta i 1 ed language specifications. For this reason, these
definitions are, in most instances, brief and do not include
detailed syntactical rules.

Access Mode:
The manner in which records are to be operated ~pan within a file.

Actual Decimal Point:
The physical representation,
characters period (. > or comma
in a data item.

using either of the decimal point
(, >, of the decimal point position

Alphabet-Name:
A user-defined word, in the SPECIAL-NAMES paragraph of the
Environment Division, t~at assigns a name to a specific character
set and/or collating se~uence.

Alphabetic Character:
A character that belongs to the following set of letters: A, B, C,
D, E, F, G, H, I, J, K, L, M, N, 0, P, G, R, S, T, U, V, W, X, Y,
Z, and the space.

Alphanumeric Character:
Any character in the computer's character set.

Alternate Record Key:
A key, other than the prime record key, whose contents identify a
record within an indexed file.

Arithmetic Expression:
An arithmetic expression
elementary item, a numeric
separated by arithmetic
separated by an arithmetic
enclosed in parentheses.

can be an identifier or a numeric
literal, such identifiers and literals
operators, two arithmetic expressions
operator, or an arithmetic expression

PAGE 243

Arithmetic Operator:
A single character that belongs to the following set:

Character

+

* I

Ascending Key:

Meaning

addition
subtraction
multiplication
division

A key upon the values of which data is ordered starting with the
lowest value of key up to the highest value of key in accordance
with the rules for comparing data items.

Assumed Decimal Point:
A decimal point position which does not involve the existence of
an actual character in a data item. The assumed decimal point has
logical meaning but no physical representation.

At End Condition:
A condition caused during the execution of a READ statement for a
sequentially accessed file.

Block:
A physical unit of data that is normally composed of one or more
logical records. For mass storage files, a block may contain a
portion of a logical record. The size of a block has no direct
relationship to the size of the file within which the block is
contained or to the size of the logical record(s) that are either
continued within the block or that overlap the block. The term is
synonymous with physical record.

Ca 11 ed Program:
A program which is the obJect of a CALL statement combined at
obJect time with the calling program to produce a run unit.

Ca 11 i ng Program:
A program which executes a CALL to another program.

Character:
The basic indivisible unit of the language.

PAGE 244

-~---------~---- ~---~-- -------- - --- --------

-~

Character Position:
A character position is the amount of physical storage required to
store a single standard data format character described as USAGE
is DISPLAY <one byte>.

Character-String:
A sequence of contiguous characters which form a COBOL word, a
literal, a PICTURE character-string, or a comment-entry.

Class Condition:
The proposition, for which a truth va 1 ue can be determined, that
the content of an item is wholly alphabetic or is wholly numeric.

Clause:
A clause is an ordered set of consecutive COBOL character-strings
whose purpose is to specify an attribute of an entry.

COBOL Character Set:
The complete COBOL character set consists of the 51 characters
listed below.

Character

0, 1, ... , 9
A, B, ... , Z

+

* I
=
$

II

(

)

>
<

COBOL Word. (See Word)

Collating Sequence:

Meaning

digit
letter
space (blank)
plus sign
minus sign (hyphen>
asterisk
stroke <virgule, slash>
equal sign
currency sign
comma (decimal point>
semicolon
period (decimal point)
quotation mark
left parenthesis
right parenthesis
greater than symbol
less than symbol

_,---.... The sequence in which the characters that are ac c ep tab 1 e in a
computer are ordered for purposes of comparing.

PAGE 245

Column:
A character position within a print line. The columns are numbered
from 1, by 1, starting at the leftmost character position of the
print line and extending to the rightmost position of the print
1 ine.

Combined Condition:
A condition that is the result of connecting two or more
conditions with the 'AND' or the 'OR' logical operator.

Comment-Entry:
An entry in the Identification Division that may be any
combination of characters from the computer character set.

Comment Line:
A source program line represented by an asterisk in the indicator
area of the line and any characters from the computer's character
set in area A and area B of that line. The comment line serves
only for documentation in a program. A special form of comment
line represented by a stroke (/) in the indicator area of the line
and any characters from the computer's character set in area A and
area B of that line causes page eJection prior to printing the
comment.

Compile-Time:
The time at which a COBOL source program is translated, by a COBOL
compiler, to a COBOL obJect program.

Compiler Directing Statement:
A statement, beginning with a compiler directing verb, that causes
the compiler to take a specific action during compilation.

Complex Condition:
A condition in which one or more logical operators act upon one or
more conditions.

Computer-Name:
A system-name that identifies the computer upon which the program
is to be compiled or run <commentary only>.

PAGE 246

Condition:
A status of a program at execution time for which a truth value
can be determined. Where the term 'condition' (condition-!,
condition-2, ...) appears in these language specifications in or
in reference to 'condition' (condition-!, condition-2, ... > of a
general format, it is a conditional expression consisting of a
simple condition, optionally parenthesized, consisting of the
syntactically correct combination of simple conditions, logical
operators, and parentheses, for which a truth value can be
determined.

Condition-Name:
A user-defined word assigned to a specific value, set of values,
or range of values, within the complete set of values that a
conditional variable may possess; or the user-defined word
assigned to a status of a system software switch.

Condition-Name Condition:
The proposition, for which a truth value can be determined, that
the value of a conditional variable is a member of the set of
values attributed to a condition-name associated with the
conditional variable.

Conditional Expression:
A simple condition or a complex condition specified in an IF or
PERFORM statement.

Conditional Statement:
A conditional statement specifies that the truth value of a
condition is to be determined and that the subsequent action of
the obJect program is dependent on this truth value.

Conditional Variable:
A data item one or more values of which has a condition name
assigned to it.

Configuration Section:
A section of the Environment Division that describes overall
specifications of source and obJect computers.

PAGE 247

Connective:
A reserved word that is used to:

Associate a data-name, paragraph-name or condition-name with
its ~ualifier.

Link two or more operands written in a series.

Form conditions (logical connectives>.

Contiguous Items:
Items that are described by consecutive entries in the Data
Division, and that bear a definite hierarchic relationship to each
other.

Counter:
A data item used for storing numbers or number representations in
a manner that permits these numbers to be increased or decreased
by the value of another number, or to be changed or reset to zero
or to an arbitrary positive or negative value.

Currency Sign:
The character '$' of the COBOL character set.

Currency Symbol:
The character defined by the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph. If no CURRENCY SIGN clause is present in
a COBOL source program, the currency symbol is identical to the
currency sign.

Current Record:
The record which is available in the record area associated with
the file.

Current Record Pointer:
A conceptual entity that is used in the selection of the next
record.

Data Clause:
A clause that appears in a data description entry
Division and provides information describing
attribute of a data item.

PAGE 248

in the Data
a particular

Data Description Entry:
An entry 'in the Data Description that is composed
level-number followed by a data-name, if required,
followed by a set of data clauses, as required.

Data Item:

of a
and then

A character or a set of contiguous characters (excluding in either
case literals) defined as a unit of data by the COBOL program.

Data-Name:
A user-defined word that names a data item described in a data
description entry in the Data Division. When used in the general
formats, 'data-name' represents a word which can neither be
subscripted, indexed, nor qualified unless specifically permitted
by the rules for that format.

Debugging Line:
A debugging line is any line with 'D' in the indicator area of the
1 ine.

Declaratives:
A set of one or more special purpose sections, written at the
beginning of the Procedure· Division, the first of which is
preceded by the key word DECLARATIVES and the last of which is
followed by the key words END DECLARATIVES. A declarative is
composed of a section header, followed by a USE compiler directing
sentence, followed by a set of zero, one or more associated
paragraphs.

Declarative-Sentence:
A compiler-directing sentence consisting of a single USE statement
terminated by the separator period.

Delimiter:
A character or a sequence of contiguous characters that identify
the end of a string of characters and separates that string of
characters from the following string of characters. A delimiter is
not part of the string of characters that it delimits.

Digit Position:
A digit position is the amount of physical storage required to
store a single digit. This amount may vary depending on the usage
of the data item describing the digit position.

PAGE 249

Division:
A set of zero, one or more sections of paragraphs, called the
division body, that are formed and combined in accordance with a
specific set of rules. There are four (4> divisions in a COBOL
program: Identification, Environment, Data, and Procedure.

Division Header:
A combination of words followed by a period and a space that
indicates the beginning of a division. The division headers are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION [USING data-name-1 tdata-name-2J ... J.

Dynamic Access:
An access mode in which specific logical records can be obtained
from or placed into a mass storage file in a non sequential manner
(see Random Access) and obtained from a file in a sequential
manner (see Sequential Access>, during the scope of the same OPEN
statement.

Editing Character:
A single character or fixed two-character combination belonging to
the following set:

Character

B
0
+

CR
DB
z
* $

I

Elementary Item:

Meaning

space
zero
plus
minus
credit
debit
zero suppress
check protect
currency sign
comma (decimal point)
period (decimal point>
stroke (virgule, slash)

A data item that is described as not being further logically
subdivided.

End of Procedure Division:
The physical position in a COBOL source program after which no
further procedures appear.

PAGE 250

. -

Entry:
Any descriptive set of consecutive clauses terminated by a period
and written in the Identification Division, Environment Division,
or Data Division of a COBOL source program.

Environment Clause:
A clause that appears as part of an Environment Division entry.

Execution Time. (See ObJect Time>

Extend Mode:
The state of a file after execution of an OPEN statement, with the
EXTEND phrase specified, for that file and before the execution of
a CLOSE statement for that file.

Figurative Constant:
A compiler generated value referenced through the use of certain
reserved words.

Fi le:
A collection of records.

File Clause:
A clause that appears as part of the file description <FD> entries
in the Data Division.

FILE-CONTROL:
The name of an Environment Division paragraph in which the data
files for a given source program are declared.

File Description Entry:
An entry in the File Section of the Data Division that is composed
of the level indicator FD, followed by a file-name, and then
followed by a set of file clauses as required.

Fi le-Name:
A user-defined word that names a file described in a file
description entry within the File Section of the Data Division .

File Organization:
The permanent logical file structure established at the time that
a file is created.

PAGE 251

File Section: ~

The section of the Data Division that contains file description
entries together with their associated record descriptions.

Format:
A specific arrangement of a set of data.

Group Item:
A named contiguous set of elementary or group items.

I-O-CONTROL:
The name of an Environment Division paragraph in which sharing of
same areas by several data files is specified.

I-O-Mode:
The state of a file after execution of an OPEN statement, with the
I-O phrase specified, for that file and before the execution of a
CLOSE statement for that file.

Identifier:
A data-name, followed as required, by the syntactically correct
combination of qualifiers, subscripts, and indices necessary to
make unique reference to a data item.

Imperative Statement:
A statement that begins with an imperative verb and
unconditional action to be taken. An imperative
consist of a sequence of imperative statements.

Index:

specifies an
statement may

A data i,em, the contents of which represent the identification of
a particular element in a table.

Index Data Item:
A data item in which the value associated with an index-name can
be stored.

Index-Name:
A user-defined word that names an index associated with a specific
table.

PAGE 252

_---. Indexed Data-Name:
An identifier that is composed of a data-name, followed by one or
more index-names enclosed in parentheses.

Indexed File:
A file with indexed organization.

Indexed Organization:
The permanent logical file
identified by the value
record.

Input File:

structure in
of one fixed

A file that is opened in the input mode.

Input Mode:

which each record is
length key within that

The state of a file after execution of an OPEN statement, with the
INPUT phrase specified, for that file and before the execution of
a CLOSE statement for that file.

Input-Output File:
A file that is opened in the I-0 mode.

Input-Output Section:
The section of the Environment Division that names the files and
the external media required by an obJect program and which
provides information required for transmission and handling of
data during execution of the obJect program.

Integer:
A numeric literal or a numeric data item that does not include any
character positions to the right of the assumed decimal point.
Where the term 'inte~er' appears in general formats, integer must
not be a numeric data item, and must not be signed, nor zero,
unless explicitly allowed by the rules of that format.

Invalid Key Condition:
A condition, at obJect time, caused when a specific value of the
key associated with an indexed or relative file is determined to
be invalid.

Key:
,,,-._ A data item which identifies the location of a record.

PAGE 253

Key Word:
A reserved word whose presence is required when the format in
which the word appears is used in a source program.

Level Indicator:
Two alphabetic characters that identify a specific type of file or
a position in hierarchy.

Level-Number:
A user-defined word which indicates the position of a data item in
the hierarchical structure of a logical record or which indicates
special properties of a data description entry. A level-number is
expressed as a one- or two-digit number. Level-numbers in the
range 1 through 49 indicate the position of a data item in the
hierarchical structure of a logical record. Level-numbers in the
range 1 through 9 may be written either as a single digit or as a
zero followed by a significant digit. Level-numbers 77 and 88
identify special properties of a data description entry.

Library-Name:
A user-defined word that names a COBOL library that is to be used
by the compiler for a given source program compilation.

Linkage Section:
The section in the Data Division of the called program that
describes the data items available from the calling program. These
data items may be referred to by both the calling and called
program.

Literal:
A character-string whose value is implied by the ordered set of
characters comprising the string.

Logical Operator:
One of the reserved words AND, OR, or NOT. In the formation of a
condition, both or neither of AND and OR can be used as logical
connectives. NOT can be used for logical negation.

Mass Storage:
A storage medium on which data may be organized and maintained in
both a sequential and nonsequential manner.

PAGE 254

Mass Storage File:
A collection of records that is assigned to a mass storage medium.

Mnemonic-Name:
A user-defined word that is associated in the Environment Division
with a specified system-name.

Native Character Set:
The character set associated with the COBOL Compiler <ASCII>.

Native Collating Se~uence:
The collating se~uence associated with the native character set.

Negated Combined Condition:
The 'NOT' logical operator immediately followed by a parenthesized
combined condition.

Negated Simple Condition:
The 'NOT' logical operator immediately followed by a simple
condition.

Next Executable Sentence:
The next sentence to which control will be transferred after
execution of the current statement is complete.

Next Executable Statement:
The next statement to which control will be transferred after
execution of the current statement is complete.

Next Record:
The record which logically follows the current record of a file.

Noncontiguous Items:
Elementary data items, in the
Sections, which bear no hierarchic
items.

Nonnumeric Item:

Working-Storage
relationship to

and Linkage
other data

A data item whose description permits its contents to be composed
of any combination of characters taken from the computer's
character set. Certain categories of nonnumeric items may be
formed from more restricted character sets.

PAGE 255

Nonnumeric Literal: ,,--...,
A character-string bounded by quotation marks. The string ol
characters may include any character in the computer's character
set. To represent a single quotation mark character within a
nonnumeric literal, two contiguous quotation marks must be used.

Numeric Character:
A character that belongs to the lollowing set ol digits: 0, 1, 2,
3, 4, 5, 6, 7, 8, 9.

Numeric Item:
A data item whose description restricts its contents to a value
represented by characters chosen from the digits '0' through '9';
ii signed, the item may also contain a '+', '-', or other
representation of an operational sign.

Numeric Literal:
A literal composed of one or more numeric characters that also may
contain either a decimal point, or an algebraic sign, or both. The
decimal point must not be the rightmost character. The algebraic
sign, if present, must be the leftmost character.

OB.JECT-COMPUTER:
The name of an Environment Division paragraph in which the
computer environment, within which the obJect program is executed,
is described.

ObJect of Entry:
A set of operands and reserved words, within a Data Division
entry, that immediately follows the subJect of the entry.

ObJect Program:
A set or group of executable instructions and other material
designed ta interact with data ta provide problem solutions. In
this context, an obJect program is generally the result ol the
operation of a COBOL compiler on a source program. Where there is
no danger of ambiguity, the word 'program' alone may be used in
place of the phrase 'obJect program'.

ObJect Time:
The time at which an obJect program is executed.

PAGE 256

---------~~~-

Open Mode:
The state of a file after execution of an OPEN statement for that
file and before the execution of a CLOSE statement for that file.
The particular open mode is specified in the OPEN statement as
either INPUT, OUTPUT, I-0, or EXTEND.

Occurrence Number:
The relative data item number in a table.

Operand:
Whereas the general definition of operand is 'that component which
is operated upon', for the purposes of this publication, any
lowercase word <or words) that appears in a statement or entry
format malJ be considered to be an op er and and, as such, is an
implied reference to the data indicated by the operand.

Operational Sign:
An algebraic sign, associated with a
numeric literal, to indicate whether its
negative.

numeric data item or a
value is positive or

Optional Word:
A reserved word that is included in a specific format only to
improve the readability of the language and whose presence is
optional to the user when the format in which the word appears is
used in a source program.

Output File:
A file that is opened in either the output mode or extend mode.

Output Mode:
The state of a file after execution of an OPEN statement, with the
OUTPUT or EXTEND phrase specified, for that file and before the
execution of a CLOSE statement for that file.

Paragraph:
In the Procedure Division, a paragraph-name
and a space and by zero, one, or more
Identification and Environment Divisions,
followed by zero, one, or more entries.

PAGE 257

followed by a period
sentences. In the

a paragraph header

Paragraph Header: ~
A reserved word, followed by a period and a space that indicates
the beginning of a paragraph in the Identification and Environment
Divisions. The permissible paragraph headers are:

In the Identification Division:

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
SECURITY.

In the Environment Division:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPEC I AL-NAMES.
FILE-CONTROL.
I -a-CONTROL.

Paragraph-Name:
A user-defined word that identifies and begins a paragraph in the
Procedure Division.

Phrase:
A phrase is an ordered set of
character-strings that _form a
statement or of a COBOL clause.

Physical Record. (See Block>

Prime Record Key:

one or more consecutive COBOL
portion of a COBOL procedural

A key whose contents uniquely identify a record within an indexed
file.

Procedure:
A paragraph or group of logically successive paragraphs, or a
section or group of logically successive sections, within the
Procedure Division.

Procedure-Name:
A user-defined word which is used to name a paragraph or section
in the Procedure Division. It consists of a paragraph-name (which
may be qualified), or a section-name.

PAGE 258

Program-Name:
A user-defined word that identifies a COBOL source program.

Punctuation Character:
A character that belongs to the following set:

Character

II

(

)

=

Qualified Data-Name:
An identifier that is
more sets of either of
data-name qualifier.

Oualifier:

Meaning

comma
semicolon
period
quotation mark
left parenthesis
right parenthesis
space
equal sign

composed of a data-name followed by one or
the connectives OF and IN followed by a

A data-name which is used in a reference together with another
data name at a lower level in the same hierarchy. A section-name
which is used in a reference together with a paragraph-name
specified in that section.

Random Access:
An access mode in which the program-specified value of a key data
item identifies the logical record that is obtained from, deleted
from, or placed into a relative or indexed file.

Record Area:
A storage area allocated for the purpose of processing the record
described in a record description entry in the File Section.

Record Description. <See Record Description Entry)

Record Description Entry:
The total set of data description entries associated with a
particular record.

PAGE 259

Record Key: ,,,-----._
The prime record key whose contents uniquely identify a record
within an indexed file.

Record-Name:
A user-defined word that names a record described in a record
description entry in the Data Division.

Reference Format:
A format that provides a standard method for describing COBOL
source programs.

Relation. <See Relational Operator>

Relation Character:
A character that belongs to the following set:

Character

>
<
=

Relation Condition:

Meaning

greater than
less than
equal to

The proposition, for which a truth value can be determined, that
the value of a data item has a specific relationship to the value
of another data item. (See Relational Operator)

PAGE 260

. ~.

Relational Operator:
A reserved word, a relation character, a group of consecutive
reserved words, or a group of consecutive reserved words and
relation characters used in the construction of a relation
condition. The permissible operators and their meanings are:

Relational Operator Meaning

IS CNOTl GREATER THAN Greater than or not
IS CNOTl > greater than

IS CNOTl LESS THAN Less than or not
IS CNOTJ < less than

IS CNOTJ EGUAL TO Eq_ual to or not
IS [NOT] = eq,ual to

Relative File:
A file with relative organization.

Relative Key:
A key whose contents identifies a logical record in a relative
file.

Relative Organization:
The permanent logical file structure in which each record is
uniq_uely identified by an integer value greater than zero, which
specifies the record's logical ordinal position in the file.

Reserved Word:
A COBOL word specified in the list of words which may be used in
COBOL source programs, but which must not appear in the programs
as user-defined words or system-names.

Run Unit:
A set of one or more obJect programs which function at obJect
time, as a unit to provide problem solutions.

Section:
A set of zero, one, or more paragraphs or entries, ca 11 ed a
section body, the first of which is preceded by a section header.
Each section consists of the section header and the related
section body .

PAGE 261

Section Header: ~
A combination of words followed by a period and a space that
indicates the beginning of a section in the Environment, Data and
Procedure Division.

In the Environment and Data Divisions, a section
composed of reserved words followed by a period and a
permissible section headers are:

In the Environment Division:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

header is
space. The

In the Procedure Division, a section header is composed of a
section-name, followed by the reserved word SECTION, followed by a
segment-number (optional), followed by a period and a space.

Section-Name:
A user-defined word which names a section
Division.

Segment-Number:

in the Procedure

A user-defined word which classifies sections in the Procedure
Division for purposes of segmentation. Segment-numbers may contain
only the characters '0', '1 ', ... , '9'. A segment-number may be
expressed either as a one- or two-digit number.

Sentence:
A sequence of one or more statements,
terminated by a period followed by a space.

Separator:

the last of which is

A punctuation character used to delimit character-strings.

Sequential Access:
An access mode in which logical records are obtained from or
placed into a file in a consecutive predecessor-to-successor
logical record sequence determined by the order of records in the
file. ~

PAGE 262

Seq_uential File:
A file with seq_uential organization.

Seq_uential Organization:
The permanent logical file structure
identified by a predecessor-successor
when the record is placed into the file.

Simple Condition:
Any single condition chosen from the set:

relation condition
class condition
condition-name condition
switch-status condition
(simple-condition)

SOURCE-COMPUTER:

in which a
relationship

record is
established

The name of an Environment Division paragraph in which the
computer environment, within which the source program is compiled,
is described.

Source Program:
A syntactically correct set of COBOL statements beginning with an
Identification Division and ending with the end of the Procedure
Division. In contexts where there is no danger of ambiguity, the
word 'program' alone may be used in place of the phrase 'source
program. '

PAGE 263

Special Character:
A character that belongs to the following set:

Character

+

* I
=
$

II

(

)

>
<

Special-Character Word:

Meaning

plus sign
minus sign
asterisk
stroke (virgule, slash)
eq_ual sign
currency sign
comma (decimal point>
semicolon
period (decimal point)
quotation mark
left parenthesis
right parenthesis
greater than symbol
less than symbol

A reserved word which is an arithmetic operator or a relation
character.

SPECIAL-NAMES:
The name of an Environment Division paragraph in which
switch-names are related to user-defined words.

Standard Data Format:
The concept used in describing the characteristics of data ,in a
COBOL Data Division under the characteristics or properties ~f the
data are expressed in a form oriented to the appearance of the
data on a printed page of infinite length and breadth, rather than
a form oriented to the manner in which the data is stored
internally in the computer, or on a particular external medium.

Statement:
A syntactically valid combination of words and symbols written in
the Procedure Division beginning with a verb.

SubJect of Entry:
An operand or reserved word that appears immediately following the
level indicator or the level-number in a Data Division entry.

Subprogram. (See Cal led Program)

PAGE 264

Subscript:
An integer whose value identifies a particular element in a table.

Subscripted Data-Name:
An identifier that is composed of a data-name followed by one or
more subscripts enclosed in parentheses.

Switch-Status Condition:
The proposition, for which a truth value can be determined that a
switch, capable of being set to an 'on' or 'off' status, has been
set to a specific status.

Sy stem-Name:
A COBOL word which is used to communicate with the operating
environment.

Table:
A set of logically consecutive items of data that are defined in
the Data Division by means of the OCCURS clause.

Table Element:
A data item that belongs to the set of repeated items comprising a
table.

Text-Name:
A file access name that identifies library text.

Truth Value:
The representation of the result of the evaluation of a condition
in terms of one of two values:

true
false

Unary Operator:
A plus <+> or a minus
left parenthesis in
effect of multiplying

User-Defined Word:

<-> sign, which precedes a variable or a
an arithmetic expression and which has the

the expression by +1 or -1 respectively.

A COBOL word that must be supplied by the user to satisfy the
format of a clause or statement.

PAGE 265

Variable:
A data item whose value may be changed by execution of the obJect
program. A variable used in an arithmetic expression must be a
numeric elementary item.

Verb:
A word that expresses an action to be taken by a COBOL compiler or
ob Ject program.

Word:
A character-string of not more than 30 characters which forms a
user-defined word, a system-name, or a reserved word.

Working-Storage Section:
The section of the Data Division that describes working storage
data items, composed either of noncontiguous items or of working
storage records or of both.

77-Level-Description-Entry:
A data desccription entry that describes a noncontiguous data item
with the level-number 77.

PAGE 266

APPENDIX D

COMPOSITE LANGUAGE S~ELETON

PAGE 267

COMPOSITE LANGUAGE SKELETON

This section contains the composite language skeleton of the
American National Standard COBOL. It is intended to display
complete and syntactically correct formats.

For the general formats of the four divisions the leftmost margin
is equivalent to margin A in a COBOL source program. The first
indentation after the leftmost margin is equivalent to margin Bin
a COBOL source program.

For the general formats of the verbs and conditions the leftmost
margin indicates the beginning of the format for a new COBOL verb.
The first indentation after the leftmost margin indicates
continuation of the format of the COBOL verb.

The following is a summary of the formats shown on the following
pages:

- Identification Division general format
- Environment Division general format
- The three formats of the file control entry
- Data Division general format
- The three formats for a data description entry
- The format for a field definition entry
- Procedure Division general format
- General format of verbs listed in alphabetical order

General format for conditions
Formats for qualification, subscripting, indexing, and

an identifier
- General format for a COPY statement

PAGE 268

RM/COBOL LANGUAGE SYNTAX

The RM/COBOL language is based upon the ANSI X3. 23-1974 COBOL
standard. Minor departures from that document are reflected in the
syntax description which follows but are not separately noted.
Semantic rules are not changed.

The description is in a condensed form of the standard COBOL
syntax notation. In some cases separate formats are combined and
general terms are employed for user names.

System-names and implementation restrictions are:

computer-name:
program-name:
switch-names:
device-types:

external-file-name:

User-defined word
a-character name
SWITCH-1, ... , SWITCH-a
PRINT
INPUT
OUTPUT
INPUT-OUTPUT
RANDOM
One- to thirty-character name

PAGE 269

IDENTIFICATION DIVISION GENERAL FORMAT

IDENTIFICATION DIVISION.
-------------- --------
PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] ... l

[INSTALLATION. [comment-entry] J

[DATE-WRITTEN. [comment-entry l J

[SECURITY. [comment-entry J . . . J

PAGE 270

ENVIRONMENT DIVISION GENERAL FORMAT

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer-name.

OBJECT-COMPUTER. computer-name

C, MEMORY SIZE integer {WORDS }l

{CHARACTERS}

{MODULES }

C, PROGRAM COLLATING SEGUENCE IS alphabet-name].

[SPECIAL-NAMES. C, switch-name

<ON STATUS IS condition-name-1 C, OFF STATUS IS condition-name-2l}l

{OFF STATUS IS condition-name-2 C, ON STATUS IS condition-name-ll}l

C, alphabet-name IS {STANDARD-1}]

{NATIVE }

C, CURRENCY SIGN IS literal-11

C, DECIMAL-POINT IS COMMAJ. J

PAGE 271

[INPUT-OUTPUT SECTION.

FILE-CONTROL.

{file-control-entry}

[I -0-CONTROL.

C; SAME AREA FOR f i l e-name-1 C, f i 1 e-name-2J ... J. . . . J J

PAGE 272

FILE CONTROL ENTRY GENERAL FORMAT

FORMAT 1

SELECT file-name

ASSIGN TO device-type <"external-file-name"}
------ (data-name-1 }

C; ORGANIZATION IS SEGUENTIALJ

C; ACCESS MODE IS SEGUENTIALJ

[; FILE STATUS IS data-name-2J.

FORMAT 2

SELECT file-name

ASSIGN TO RANDOM, <"external-file-name">
{data-name-1 }

ORGANIZATION IS RELATIVE

C; ACCESS MODE IS { SEGUENTIAL C, RELATIVE KEY IS data-name-2J) J

<<RANDOM}

<<DYNAMIC>

C; FILE STATUS IS data-name-3J.

PAGE 273

, RELATIVE KEY IS data-name-2}

}

FORMAT 3

SELECT file-name

ASSIGN TO RANDOM, {"external-file-name"}
------ ------ {data-name-1 }

ORGANIZATION IS INDEXED

C; ACCESS MODE IS {SEOUENTIAL}l

{RANDOM }

{DYNAMIC }

; RECORD KEY IS data-name-2

C; ALTERNATE RECORD KEY IS data-name-3 CWITH DUPLICATES]] ...

C; FILE STATUS IS data-name-4].

PAGE 274

/~'

DATA DIVISION GENERAL FORMAT

DATA DIVISION.

CFILE SECTION.

CFO file-name

C; BLOCK CONTAINS Cinteger-1 TOl integer-2 {RECORDS }l

{CHARACTERS}

C; RECORD CONTAINS Cinteger-3 TOJ integer-4 CHARACTERS]

LABEL {RECORD IS } {STANDARD}

{RECORDS ARE} {OMITTED}

[; VALUE OF LABEL IS nonnumeric-literal-1J

[; DATA {RECORD IS } data-name-1 t, data-name-2J . . . J

{RECORDS ARE>

Cree ord-d escri pti on-entry l . . . l ...

[WORKING-STORAGE SECTION.

[77-level-description-entryJ ... l
[record-description-entry l

[LINKAGE SECTION.

[77-level-description-entryl ... Jl
[record-description-entry J

PAGE 275

DATA DESCRIPTION ENTRY GENERAL FORMAT

FORMAT 1

level-number {data-name-1}
{FILLER }

C; REDEFINES data-name-21

[; <PICTURE> IS character-string]

{PIC }

C; CUSAGE ISJ {COMPUTATIONAL }J

{COMP }

{COMPUTATIONAL-1>

{COMP-1 }

{COMPUTATIONAL-3}

{COMP-3

{DISPLAY

<INDEX

}

}

}

C; CSIGN ISl TRAILING [SEPARATE CHARACTERJ J

C; OCCURS {integer-1 TIMES }
------ {integer-1 TO integer-2 TIMES DEPENDING ON data-name-3}

[INDEXED BY index-name-1 C, index-name-2] ... J J

PAGE 276

.,,..---_. C; {SYNCHRONIZED} CLEFT l J

-CSYNC } CRIGHTJ

C; {JUSTIFIED} RIGHTJ

{JUST }

[; BLANK WHEN ZEROJ

C; VALUE IS literal]

FORMAT 2

66 data-name-1; RENAMES data-name-2 [{THROUGH} data-name-3].

{THRU }

FORMAT 3

88 condition-name; {VALUE IS }

{VALUES ARE}

literal-1 C-CTHROUGH} literal-2J

-CTHRU }

C, literal-3 C-CTHROUGH} literal-4J J

-CTHRU }

PAGE 277

PROCEDURE DIVISON GENERAL FORMAT

FORMAT 1

PROCEDURE DIVISION [USING data-name-1 C, data-name-2] . . . l .

C DECLARATIVES.

<section-name SECTION Csegment-numberJ. declarative-sentence

[paragraph-name. Csentencel . . . J . . . }

END DECLARATIVES. l

<section-name SECTION Csegment-numberJ.

[paragraph-name. CsentenceJ . . . l . . . }

END PROGRAM.

FORMAT 2

PROCEDURE DIVISION [USING data-name-1 C, data-name-2] . . . J .

{paragraph-name. CsentenceJ . . . } ...

END PROGRAM.

PAGE 278

GENERAL FORMAT FOR VERBS

ACCEPT {identifier-1 C, UNIT {identifier-2}l
------ <literal-1 >

[, LINE {identifier-3}] C, POSITION {identifier-4}]
{literal-2 } -------- {literal-3 }

C, SIZE {identifier-5}] [, PROMPT Cliteral-5ll
{literal-4 } ------

[, ECHOJ C, CONVERT][, TABl C, ERASE] C, NO BEEP]

C, {OFF}] [, ON EXCEPTION identifier-6 imperative statement]} ...

ACCEPT id en t i.f i er FROM {DATE}

<DAY}

<TIME}

ADD {identifier-1} C, identifier-2l ... TO identifier-m [ROUNDED]
{literal-1 } t, literal-2 J -------

[; ON SIZE ERROR imperative-statement]

ADD < identi f ier-1 }, <id ent if i er-2} C, id enti f i er-3]
-Cliteral-1 } -Cliteral-2 } C, literal-3 l

GIVING identifier-m CROUNDEDJ

[; ON SIZE ERROR imperative-statementJ

ADD {CORRESPONDING} identifier-1 TO identifier-2

<CORR }

CROUNDEDl [; ON SIZE ERROR imperative-statement]

PAGE 279

ALTER procedure-name-1 TO [PROCEED TOJ procedure-name-2

C, procedure-name-3 TO [PROCEED TOJ procedure-name-4]

CALL {identifier-1} [USING data-name-1 [, data-name-2] ... l
---- {literal-1 > -----

CLOSE file-name-1 [{REEL} [WITH NO REWINDJ l

<UNIT>

WITH <NO REWIND}

{LOCK }

C, file-name-2 [{REEL> [WITH NO REWIND] l l ...

{UNIT>

WITH {NO REWIND>

{LOCK }

COMPUTE identifier-1 [ROUNDED]= arithmetic-expression

[; ON SIZE ERROR imperative-statement]

DELETE file-name RECORD[; INVALID KEY imperative-statement].

DISPLAY {{identifier-1} C, UNIT {identifier-2} l
------- {literal-1 } {literal-2 >

C, LINE {identifier-3}lC, POSITION {identifier-4}l
{literal-3 } -------- {literal-4 }

[, SIZE {identifier-5}][, BEEPJC, ERASE]
<literal-5 } -----

[, <HIGH>lt, BLINKlt, REVERSE]}

{LOW}

PAGE 280

·~ DIVIDE {identifier-1} INTO identiTier-2 [ROUNDED]
------ {literal-1 } ---- -------

[; ON SIZE ERROR imperative-statement]

DIVIDE {identifier-1} INTO {identifier-2} GIVING identifier-3
------ {literal-1 } {literal-2 } ------

[ROUNDED] [; ON SIZE ERROR imperative-statement]

DIVIDE {identifier-1} BY {identifier-2} GIVING identifier-3 CROUNDEDJ
------ {literal-1 > -- {literal-2 > ------ -------

[; ON SIZE ERROR imperative-statement]

EXIT [PROGRAM].

GO TO procedure-name-1

GO TO procedure-name-1 C, procedure-name-2] ... , procedure-name-n

DEPENDING ON identifier

IF condition; <statement-1 } <; ELSE statement-2 }

{NEXT SENTENCE>{; ELSE NEXT SENTENCE}

PAGE 281

INSPECT identifier-1

[TALLYING identifier-2 FOR <<ALL } {identifier-3}}
{literal-1 }}

<<LEADING}

< CHARACTERS }

[{BEFORE} INITIAL {identifier-4}JJ
------ {literal-2 }

{AFTER}

[REPLACING <<ALL } {identifier-5}} BY {identifier-6}
{literal-3 } {literal-4 }

<<LEADING} }

<<FIRST }

{ CHARACTERS

}

}

[{BEFORE} INITIAL {identifier-7}JJ
------ {literal-5 }

<AFTER>

NOTE: The TALLYING option, the REPLACING option, or both
options must be selected.

PAGE 282

~-

MOVE {identifier-1} TO identifier-2 C, identifier-3] ...
{literal }

MOVE {CORRESPONDING> identifier-1 TO identifier-2

{CORR }

MULTIPLY {identifier-1} BY identifier-2 CROUNDEDJ
-------- {literal-1 > -------

[; ON SIZE ERROR imperative-statement]

MULTIPLY {identifier-1} BY {identifier-2} GIVING identifier-3
-------- {literal-1 } {literal-2 } ------

[ROUNDED] [; ON SIZE ERROR imperative-statement]

OPEN {{INPUT file-name-1 [WITH NO REWIND]}

C, file-name-2 [WITH NO REWINDJ ...

<OUTPUT file-name-3 [WITH NO REWIND]}

C, file-name-4 [WITH NO REWINDJJ ...

<I-0 file-name-5}[, file-name-6] ...

{EXTEND file-name-7}[, file-name-BJ ... } ...

PAGE 283

PERFORM procedure-name-! [{THROUGH} procedure-name-2]

<THRU }

PERFORM procedure-name-! [{THROUGH} procedure-name-2J

{THRU }

{identifier-1} TIMES
{literal-1 } -----

PERFORM procedure-name-1 [{THROUGH} procedure-name-2]

-CTHRU }

UNTIL condition-1

PERFORM procedure-name-! [{THROUGH} procedure~name-2J

<THRU }

VARYING {identifier-2} FROM -Cidentifier-3}
------- {index-name-1} {index-name-2}

-Cliteral-1 }

BY {identifier-4} UNTIL condition-!
(literal-3 } -----

CAFTER (identifier-5} FROM -Cidentifier-6}
----- {index-name-3} (index-name-4}

(literal-3 }

BY {identifier-7} UNTIL condition-2
{literal-4 } -----

CAFTER {identifier-8} FROM {identifier-9}
----- -Cindex-name-5} {index-name-6}

-Cliteral-5 }

BY {identifier-10} UNTIL condition-3 J
{literal-6 } -----

PAGE 284

J

~ READ f i 1 e-name RECORD C INTO identifier J

C; AT END imperative-statement]

READ file-name CNEXTJ RECORD CWITH NO LOCK] CINTO identifier]

[; AT END imperative-statement]

READ file-name RECORD CWITH NO LOCK] [INTO identifier]

C; KEY IS data-name]

C; INVALID KEY imperative-statement]

REWRITE record-name CFROM identifier]

[; INVALID KEY imperative-statement]

SET {identifier-1 C, identifier-2] ... > TO {identifier-3}
{index-name-1 C, index-name-2] ... > {index-name-3}

{integer-1 >

SET index-name-4 C, index-name-SJ ... {UP BY > {identifier-4}
{integer-2 >

{DOWN BY}

PAGE 285

START file-name [t,<.EY <IS EGUAL TO } data-name)
----- -----

<IS= }

<IS GREATER THAN }

<IS > }

<IS NOT LESS THAN}

<IS NOT < }

[; INVALID KEY imperative-statement]

STOP <RUN }

{literal }

SUBTRACT {identifier-1} C, identifier-2J ... FROM identifier-m
-------- {literal-1 > C, literal-2 J

[ROUNDED] [; ON SIZE ERROR imperative-statement]

SUBTRACT {identifier-1} [, identifier-21
-------- {literal-1 } [, literal-2 J

GIVING identifier-n [ROUNDED]

[; ON SIZE ERROR imperative-statement]

FROM {identifier-m}
{literal-m }

SUBTRACT <CORRESPONDING> identifier-1 FROM identifier-2 CROUND~Dl

<CORR }

[; ON SIZE ERROR imperative-statement]

UNLOCK file-name-1 RECORD

PAGE 286

.,r---..

USE AFTER STANDARD {EXCEPTION}

{ERROR }

PROCEDURE ON <file-name-1 C, file-name-2] ... }

<INPUT

<OUTPUT

<I-0

<EXTEND

WRITE record-name CFROM identifier-1]

<BEFORE> ADVANCING <<identifier-2} <LINE}}
------ <<integer } <LINES}}

<AFTER} < PAGE }

WRITE record-name [FROM identifier]

C; INVALID KEY imperative-statement]

PAGE 287

}

}

}

}

GENERAL FORMAT FOR CONDITIONS

RELATION CONDITION:

{identifier-1 } {IS CNOTl GREATER THAN}
{literal-1 } -------
{index-name-1 } {IS CNOTl LESS THAN

<IS CNOTJ EGUAL TO

<IS CNOTl :>

<IS CNOTJ <
{IS CNOTJ =

CLASS CONDITION:

identifier IS CNOTl {NUMERIC }

<ALPHABETIC}

CONDITION-NAME CONDITION:

condition-name

SWITCH-STATUS CONDITION:

condition-name

NEGATED SIMPLE CONDITION:

NOT simple-condition

PAGE 288

}

}

}

}

}

{identifier-2 }

-Cliteral-2 }

{index-name-2 }

r"· COMBINED CONDITION:

condition <<AND} condition} ...

<OR}

PAGE 289

MISCELLANEOUS FORMATS

GUALIFICATION:

{data-name-1 } [{OF} data-name-2J ...
{condition-name}

<IN}

paragraph-name [{OF} section-nameJ

{IN}

SUBSCRIPTING:

{data-name } (sub scrip t-1 C, sub scrip t-2 C, sub scrip t-3J l >
{condition-name}

INDEXING:

{data-name } ({index-name-1 [{+} literal-2J}
{condition-name} {literal-1 {-} }

[, {index-name-2[{+} literal-4J}
{literal-3 {-} }

t, {index-name-3 [{+} literal-6J > l l)
{literal-5 <-> }

PAGE 290

~--
IDENTIFIER:

FORMAT 1

data-name-1 [{OF} data-name-2] ...

{IN}

[(subscript-1 C, subscript-2 C, subscript-3] l > l

FORMAT 2

data-name-1 C{OF} data-name-2] ... C< {index-name-1 [{+} literal-2]
{literal-1 {-}

{IN}

C, {index-name-2 [{+} literal-4J}
{literal-3 {-} }

C, {index-name-3 [{+} literal-6]} ll)l
{literal-5 <-> >

PAGE 291

GENERAL FORMAT FOR COPY STATEMENT

COPY '.;ext-name

PAGE 292

Function Module

Nucleus
Table Handling
Seq_uential I/0
Relative I/0
Indexed I/0
Sort-Merge
Report Writer
Segmentation
Library
Debug

COBOL LEVEL OF IMPLEMENTATION

Implementation

Level 2.
Level 1+.
Level 2.
Level 2.
Level 2.
Nul 1.
Nul 1.
Leve 1 1.
Level 1.

Inter-program Communication
Communication

N/S. Conditional compile and
execution time interactive debugger.
Level 1.
Modilied ACCEPT and DISPLAY lor
terminal communication.

MODULE

ANSI COBOL X3.23 1974

FEDERAL INFORMATION
PROCESSING STANDARD (FIPS)

1--:
' HIGH LOW RM I

I HIGH INTERMEDIATE I INTERMEDIATE LOW !COBOL I I

-----------------:------ --------------:-------------- ----- -----
NUCLEUS 2 2 1 1 2
TABLE HANDLING 2 2 1 1 1+
SEGUENTIAL I/0 2 2 1 1 2
RELATIVE I/0 2 2 1 2
INDEXED I/0 2 2
SORT-MERGE 2 1
REPORT WRITER
SEGMENTATION 2 1 1 1
LIBRARY 2 1 1 1
DEBUG 2 2 1 N/S
INTER-PROGRAM

COMMUNICATION 2 2 1 1+
COMMUNICATION 2 2 N/S

N/S = Nonstandard

PAGE 293

EXTENSIONS BEYOND STATED LEVELS

Level 2 Nucleus (2 NUC):

- Data description includes a USAGE type of COMPUTATIONAL-1 or
COMP-1 for describing single word two's complement signed
binary data <nonstandard).

- Data description includes a USAGE type of COMPUTATIONAL-3 or
COMP-3 for describing packed decimal data <nonstandard).

- The ACCEPT statement allows multiple operands (nonstandard).

The ACCEPT statement includes syntax for specifying CRT
control information (nonstandard).

- The DISPLAY statement includes syntax for specifying CRT
control information (nonstandard).

Level 1 Table Handling (1 TBL):

Variable group size (OCCURS DEPENDING>.

Level 2 Se~uential I-0 <2 SEG>:

- The file control SELECT clause allows specification of the
external file name as a literal or data item <nonstandard).

- The READ statement includes the WITH NO LOCK option
<nonstandard>.

The UNLOCK statement is included (nonstandard).

Level 2 Relative I-0 (2 REL):

The file control SELECT clause allows specification of the
external file name as a literal or data item (nonstandard).

- The READ statement includes the WITH NO LOCK option
(nonstandard).

The UNLOCK statement is inc 1 uded. (nonstandard).

PAGE 294

Level 2 Indexed I-0 <2 INX>:

The file control SELECT clause allows specification or the
external file name as a literal or data item (nonstandard>.

- The READ statement includes the WITH NO LOCK option
(nonstandard>.

The UNLOCK statement is included (nonstandard>.

Level 1 Debug (1 DEB>:

- An interactive execution time debug facility is provided
<nonstandard>.

Level 1 Inter-Program Communication (1 IPC):

The CALL statement
<nonstandard>.

allows literals in USING phrase

- The CALL statement allows identifiers in the USING phrase to
be described with level number 01 through 49 and level
number 77 (nonstandard).

- The CALL statement supports specification or a variable
program name as identifier-1 (level 2 IPC).

Level 1 Communication <1 COM>:

ACCEPT and DISPLAY allow specification of complete screen
format in the Procedure Division (nonstandard>.

PAGE 295

EXCEPTIONS TO STATED LEVELS

Level 2 Nucleus (2 NUC>:

DATE-COMPILED
Divison.

is not supported in the Identification

- In data description the SIGN clause cannot specify LEADING
for the operational sign; omission of the SEPARATE phrase
has no effect; all operational signs are separate trailing
characters.

Alphabet-name IS literal or implementor-name may not be
specified in SPECIAL-NAMES paragraph.

- Multiple results are not supported in arithmetic statements.

- REMAINDER is not supported in DIVIDE statement.

- A procedure-name is re~uired in GO TO statements.

INSPECT data items are restricted to single character.

Compound TALLYING and REPLACING clauses in the INSPECT~
statement are not supported.

When used in the Procedure Division, the numeric literal in
the ALL form of a figurative constant may not contain more
than one character.

Arithmetic
statements.

expressions may be used only in COMPUTE

Exponentiation to a noninteger power is not supported.

- Sign conditions are not supported.

- Abbreviated combined relation conditions are not supported.

- The STRING and UNSTRING statements are not supported.

Level 2 Se~uential I-0 (2 SEG):

OPTIONAL and RESERVE may not be specified in the SELECT
clause.

- RERUN, SAME AREA or MULTIPLE FILE clauses are not supported
in I-0-CONTROL.

PAGE 296

- CODE-SET and LINAGE clauses may not be specified in a file
description entry.

The mnemonic-name and EOP options of the WRITE statement are
not supported.

The REVERSED option of the OPEN statement is not supported.

- The FOR REMOVAL option of the CLOSE statement is not
supported.

Level 2 Relative I-0 (2 REL):

The RESERVE clause of the SELECT entry is not supported.

- RERUN, SAME AREA or MULTIPLE FILE clauses are not supported
in I-0-CONTROL.

The VALUE OF clause in an FD entry must not specify a data
name.

Level 2 Indexed I-0 (2 INX):

- The RESERVE clause of the SELECT entry is not supported.

- RERUN, SAME AREA or MULTIPLE FILE clauses are not supported
in I-0-CONTROL.

Level 1 Segmentation (1 SEG):

- All independent segments must physically follow the fixed
permanent segments in the source program.

Level 1 Library (1 LIB>:

- A copy sentence must be the last entry in area B of a source
record.

Level 1 Inter-Program·communication (1 IPC):

- A CALLed program is automatically cancelled upon execution
of the EXIT PROGRAM statement.

PAGE 297

